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Abstract. Characteristic curves like isophotes, reflection lines and re-
flection circles are well–established concepts which have been used for
automatic fairing of both parametric and piecewise linear surfaces. How-
ever, the result of the fairing strongly depends on the choice of a partic-
ular family of characteristic curves: isophotes or reflection lines may look
perfect for a certain orientation of viewing and projection direction, but
still have imperfections for other directions. Therefore, fairing methods
are necessary which consider multiple families of characteristic curves.
To achieve this, we first introduce a new way of controlling characteris-
tic curves directly on the surface. Based on this, we introduce a fairing
scheme which incorporates several families of characteristic curves simul-
taneously. We confirm effectiveness of our method for a number of test
data sets.

1 Introduction

Visualization of characteristic curves provides a valuable and important tool
for first–order surface interrogation (see [1] for a recent survey). Inspection of
characteristic surface curves allows for rating and improving surface design as
well as for intuitive detection of surface defects: on the one side, they simulate
aesthetic appearance under certain lighting conditions and environment, while
on the other hand continuity and smoothness of these curves visualize respective
differential properties for surface derivatives.

Characteristic surface curves like reflection lines were originally (and still
are) used for interrogation and design of physical models, and the concept is
simulated for CAGD models in a virtual environment. Surprisingly these curves
are mainly used for interrogation, and only few approaches exist which apply
them for surface fairing and design [2–5].

Yet, the proposed methods that take advantage of characteristic curves in
this setting all have in common that they only consider a single curve family,
i.e., a main direction represented by these curves. This results in an optimized
behavior of the curves for this single direction, but — as we will show in this
paper — the single direction fairing does in general not also yield an optimized
characteristic of all other curve directions at the same optimized location. In
fact, our experiments indicate that the reverse is true.

Section 4 presents a new fairing scheme for triangulated surfaces that is
capable of incorporating an arbitrary number of families simultaneously. Prior
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to that, for efficient use of this scheme in practice, in section 3 we develop
intuitive methods for real–time curve control, i.e., determining parameters such
that specific interpolation or alignment constraints on the surface are fulfilled.
These methods allow for interactive and automatic curve specification.

1.1 Related Work

In this paper, we consider isophotes, reflection lines, and reflection circles. All
these classes of characteristic curves are illumination curves since every curve
originates from light–surface interaction [6, 7].

Isophotes can be regarded as surface curves of constant incident light inten-
sity which were extensively used to detect surface imperfections [8, 7, 1].

The reflection of a straight line on a surface is called reflection line. Just
as isophotes, reflection lines possess special properties making them valuable
for surface interrogation and surface fairing applications of parametric [2, 3, 9, 4]
and piecewise linear surfaces [5]. Recently, [5] applied reflection lines for fairing
triangular meshes employing a screen–space surface parametrization. This work
provides profound analysis of the arising numerical minimization and careful
discretization of the emerging differential operators [10]. It is most similar yet
different to this work.

Reflection circles arise from the reflections of concentric circles on a surface
similar to reflection lines. Although reflection circles are the more general class
of surface curves [11], they haven’t been used as thorough as the other more
specialized classes in surface–fairing applications. Still, recently [12] argue that a
simplified version of reflection circles called circular highlight lines also performs
well in surface–fairing applications.

There is vast literature on general surface denoising and fairing methods as
well as fair surface design based on polygonal meshes, which we do not consider
here but instead refer to a recent survey [13]. Similarly, we do not discuss al-
ternative use of light lines such as surface reconstruction applications (see, e.g.,
[14]).

2 Characteristic Curves

We use definitions of characteristic curves — isophotes, reflection lines, and
reflection circles (see figure 1) — which only depend on the normal directions
of the surface and not on its position [11]. This means we assume that both,
viewer and light sources (which are lines and circles), are located at infinity.
This is a common simplification for various kinds of environment mapping. In the
following, e denotes the normalized eye vector (viewing direction), and n(u, v)
is the unit normal to the surface x(u, v).

Isophotes are surface curves of constant incident light intensity essentially
taking into account Lambert’s cosine law or diffuse lighting. Given are eye di-
rection e and an angle α, then an isophote consists of all surface points x(u, v)
satisfying

e · n(u, v) = cosα . (1)
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(a) Isophotes (b) Reflection
lines

(c) Reflection cir-
cles

(d)
Isophotes
example

Fig. 1: Definitions of characteristic curves and example for family of isophotes on a
wavy cylinder.

Variation of angle α yields a family of isophotes.
Reflection lines are surface curves showing the mirror image of a line shaped

light source. Given are eye direction e and a line at infinity defined by its unit
normal p, then a reflection line consists of all surface points satisfying

a · p = 0 with a = 2 (e · n) n− e . (2)

Variation of p along a line at infinity yields a family of reflection lines.
Reflection circles [11] provide a generalization of isophotes and reflection

lines. They can be considered as mirror images of a family of concentric circles
on the surface. Given are e and a circle at infinity defined by a normalized center
direction r and an angle α, then a reflection circle consists of all surface points
satisfying

a · r = cosα with a = 2 (e · n) n− e . (3)

This can be easily transformed to the following condition

(e · n) (r · n) = v , (4)

where v = 1
2 (cosα + e · r). Reflection circles provide generalizations of other

classes of characteristic curves in a sense for r = e or r = −e they are equivalent
to isophotes, whereas for r ·e = 2v they are equivalent to reflection lines, respec-
tively. Families of reflection circles are obtained by either variation of v within
range [−1, 1], or variation of a, or simultaneous variation of both parameters,
respectively. In the following we will consider only the first option of varying the
scalar parameter v.

3 Characteristic Curve Control

For virtual surface interrogation, e.g., using reflection lines, a simple environment
map is sufficient to show families of reflection lines while the user moves the
geometric object under inspection. This is simple and intuitive. However, in our
setting of surface fairing, we require specification of certain characteristic curves:
for a region in focus the user wants to specify curves quickly and intuitively
such that they are roughly aligned with a prescribed direction. This setting
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(a) (ISOP, 3x) (b) (ISOP, 2x+2x)

Fig. 2: Isophotes alignment methods.
Fig. 3: Local curvature approximation of
curve passing through vertex v

provides a problem of its own because the defining parameters of the curves
do not directly relate to the resulting pathway on the surface. Moreover plain
parameter variation often yields counterintuitive and unexpected results.

In this section we show how to facilitate control of characteristic curves on
surfaces in order to enable their intuitive use in practice.

The basic idea of every presented alignment method is to let a user or a (semi-
)automatic operation specify a small number of points on the surface which a
curve or family of curves shall pass through. Such points will be called selections.
Then parameters of the curves are calculated by different alignment methods
from surface normals in a way that the respective defining conditions are satis-
fied. Alignment methods differ in the number of required point selections and in
their semantics in relation to the curve class. As every alignment method only
depends on a small, constant number of points and specifically on the surface
normals in these points, they are independent of the complexity of the surface
the controlled curves are embedded in. In practice, the user selects by ray in-
tersections with the surface, and selections can be dragged on the surface to
fine–tune a curve alignment in real–time. In a similar way, a stencil of selection
prototypes can be projected onto the surface for automatic curve control.

3.1 Alignment of Isophotes

It turns out that three selections on the surface are sufficient to define a general
isophote passing through these points. We give a closed form expression which
yields the parameter e and cosα.

Proposition 1. Let x1, x2 and x3 be three selections on a smooth surface and
n1, n2, and n3 the respective unit surface normals. Then

e =
(n1 × n2) + (n2 × n3) + (n3 × n1)
‖(n1 × n2) + (n2 × n3) + (n3 × n1)‖

and

cosα = e · n1 = e · n2 = e · n3

(5)

are the parameters defining an isophote (e, cosα) interpolating x1, x2 and x3.

Proof. Let µ = ‖(n1 × n2) + (n2 × n3) + (n3 × n1)‖, then it follows from direct
algebraic calculation that

µ cosα = e · n1 = e · n2 = e · n3 = |n1,n2,n3|. �
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In the remainder we refer to this alignment method as (ISOP, 3x), indicat-
ing that an isophote is aligned using three selections. Figure 2a illustrates the
configuration.

The alignment of a family of isophotes is achieved using two pairs of selec-
tions:

Proposition 2. Let (x1,x2) and (x3,x4) be two pairs of selections on a smooth
surface and (n1,n2) and (n3,n4) the respective unit surface normals. Then

e =
(n1 − n2)× (n3 − n4)
‖(n1 − n2)× (n3 − n4)‖

,

cosα1 = e · n1 = e · n2 and
cosα2 = e · n3 = e · n4

(6)

are the parameters defining two isophotes (e, cosα1) and (e, cosα2) of the same
family passing through the points x1, x2 and x3, x4, respectively.

Proof. Let µ = ‖(n1 − n2)× (n3 − n4)‖, then

µ cosα1 = n1 · e = n2 · e = n1 · (n2 × (n4 − n3))

and a similar statement holds for n3, n4, and cosα2, respectively. �

We call this method (ISOP, 2x+ 2x) because two isophotes of the same
family are aligned requiring two selections for each curve. Two isophotes of the
same family aligned using this method are depicted in figure 2b.

3.2 Alignment of Reflection Lines and Circles

Due to their relative simplicity, isophotes constitute a special case for which
closed form solutions to the general alignment can be given. In contrast, general
alignment of reflection lines and circles requires root finding of higher order
polynomials to determine parameters. Hence, no closed form expressions can be
given. Instead, we present a numerical and a constraint approach, respectively.

Numerical Approach. Solutions to the general alignment problem can be ob-
tained numerically by solving systems of nonlinear equations given by curve
definitions (2) and (4).

Four selections x1, x2, x3 and x4 with respective surface normals n1, n2, n3

and n4 are sufficient to establish the following system of nonlinear equations.
We call this method (REFL, 4x). Its solution for e and p yields the parameters
defining a single general reflection line on a smooth surface that passes through
the four selection points. As both vectors e and p are three–dimensional, six
equations are required to constitute the system:

Solve (2 (e·n1)·n1−e)·p !
=0, (2 (e·n2)·n2−e)·p !

=0,

(2 (e·n3)·n3−e)·p !
=0, (2 (e·n4)·n4−e)·p !

=0,

e·e !
=1 and p·p !

=1 for e and p.
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Method Calculation

(ISOP, 3x) closed form
(ISOP, 2x+ 2x) closed form

(REFL, 4x) system of equations
(REFL, e + 2x) system of equations
(REFL, 4x+ 2x) system of equations
(REFL, 3x+ 3x) system of equations
(REFL, 2x+ 2x+ 2x+Mid) system of equations
(REFL, 2x+ constr) closed form

(RECI, 5x) system of equations
(RECI, 4x+ 2x) system of equations
(RECI, 3x+ 3x) system of equations
(RECI, 2x+ 2x+ 2x+ 2x) system of equations
(RECI, 2x+ 2x+ 2x+ constr) system of equations
(RECI, 2x+ constr) closed form

Table 1: Alignment methods for characteristic curves.

Compared to the alignment of a single general reflection line, a single general
reflection circle requires one extra surface selection x5, n5 to establish the system

Solve (e·n1)·(r·n1)
!
=(e·n2)·(r·n2), (e·n1)·(r·n1)

!
=(e·n3)·(r·n3),

(e·n1)·(r·n1)
!
=(e·n4)·(r·n4), (e·n1)·(r·n1)

!
=(e·n5)·(r·n5),

e·e !
=1 and r·r !

=1 for e and r.

We refer to this method as (RECI, 5x). A solution of this system defines a
reflection circle (e, r, cosα) with

cosα = (2 (e · ni) ni − e) · r, i ∈ {1, . . . , 5}. (7)

Therefore, the reflection circle determined this way interpolates the five selection
points x1, . . . ,x5.

We provide more variants of systems to align families of both, reflection lines
and reflection circles. They are given in appendix A, and all methods are sum-
marized in table 1. The presented systems of nonlinear equations can indeed be
solved numerically in real–time. However, the following arguments suggest that
they may be less appropriate in practice compared to the closed form solution
for isophotes and — more importantly — the subsequently presented constraint
alignment method:

– Both, reflection lines and circles posses more degrees of freedom compared
to the simpler isophote curves. This is why the resulting curves, although
traversing the specified selections on the surface, do not necessarily reflect
the alignment the user intended to generate.

– The provided systems do not have a unique solution, as, e.g., both reflection
lines, (e,−p) and (e,p) pass through the same given selections. For reflection
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circles an analogous example are the parameter combinations of (e, r, cosα)
and (e,−r,− cosα).

Numerical methods are well suited for surface interrogation as they enable in-
teractive fine tuning of the alignment. The constraint approach is moreover es-
pecially suited for automatic alignment because of the lower number of selection
required and the unambiguity of the alignment results.

Constraint Approach. The constraint approach requires only two selections in
order to align both, reflection lines or reflection circles on smooth surfaces. Re-
flection circles are a generalization of reflection lines: setting its cosα parameter
to zero in fact specifies a reflection line with one lost degree of freedom which can
be taken advantage of afterwards. We restrict the derivation of the alignment
method to reflection lines in the first place and make it applicable for both curve
classes by variation of the extra parameter.

Proposition 3. Let x1, x2 be two selections on a smooth surface and n1, n2

their linear independent normals. Then

e =
(n1 + n2)
‖(n1 + n2)‖

and r = p =
(n1 × n2)
‖(n1 × n2)‖

(8)

are the parameters defining a reflection line (e,p) as well as a reflection circle
(e, r, cosα = 0) passing through the points x1, x2.

Proof. The above can easily be verified as the identity

2 · (e · ni) · (r · ni)− (e · r) = cosα = 0 , i = 1, 2

holds since cosα was set to zero and r ·ni as well as e · r is zero by construction.
�

These alignment methods are referred to as (REFL, 2x+ constr) and (RECI, 2x
+ constr), respectively. We call the approach constraint as the parameter vectors
of eye vector e and normal p of the line at infinity are restricted to be perpen-
dicular, so e · p = 0. Geometrically this means that the eye point at infinity is
constraint to the respective line at infinity.

Critical points of characteristic curves. Both approaches may yield surface curves
which show critical points, i.e., locations of self–intersection. As curves are de-
fined implicitly, we observe a locally non-manifold setting where differential prop-
erties such as curvature, which will be subject to optimization, remain undefined.
Such special cases occur rarely and should be avoided by alignment methods,
they are not critical for iterative optimization, though (see next section).
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4 Surface Fairing

We define the goal of our surface fairing method as follows: a smooth surface
should be altered by minimal local displacements such that pathways of char-
acteristic curves are straightened and homogenized. Therefore, our aim is to
penalize curvature of characteristic curves, and we minimize an error functional
which is defined as follows. For a family f of characteristic curves on a surface
S, we obtain an optimized, fair surface S ′ as

argmin
S′

{∫
f

(∫
c

κ2 (t) dt
)
d cosα

}
, (9)

where c(t) denotes that curve member of the family specified by cosα, and κ(t)
denotes curvature at location c(t). Note that this way we formulate the problem
for isophotes and reflection circles.

Discrete Setting

Moving to a discrete setting, let C define a set of discrete families of curves, e.g.,
specified by a finite set of angles. We consider piecewise linear surfaces M, i.e.,
triangles meshes defined by (V, E ,F), sets of vertices, oriented edges, and faces,
respectively. Then we define discrete error functionals of (9) as

E(V) =
∑
f∈C

Ef (V) with Ef (V) =
∑
v∈V

κ2
f (v) , (10)

where v denotes the position of vertex v ∈ V. We call Ef family error and E
accumulated error, respectively. Minimizing E(V) by altering vertex positions
yields an optimized, fair surface M′.

Curvature of Characteristic Curves

Each family of characteristic curves defines a piecewise linear scalar field over
the surface, i.e., the defining equations (1) or (3), respectively, are evaluated at
every vertex. Then members of the family are given implicitly as iso-curves w.r.t.
to a certain isovalue. We approximate curvature of such characteristic iso-curves
per vertex v ∈ V as follows.

We find intersections of the iso-contour c(v) = cv with the edges (i, j) ∈
E1

v bounding the 1–ring neighborhood Nv of v by linear interpolation between
c(vi) = cvi

and c(vj) = cvj
. Figure 3 illustrates the setting. Generally, two

intersection points are found in the regular case. We ignore vertex v if no or more
than two intersections exist, i.e., the curve intersects itself yielding a critical point
at v. The same applies if no intersection is found, i.e., the curve is restricted to
the 1–ring. Neither of these “degenerated” cases imposes any problem to our
optimization. From v and the positions of two intersections, curvature κf (v)
is given as the inverse radius of the interpolating circle. If the intersections
are approximately collinear, i.e., circle degenerates to a line, we assume zero
curvature.
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Local Optimization by Vertex Displacement

In order to minimize the accumulated error E, we iteratively displace vertices
along their normal direction. We analyze the local setting for vertex v and its
neighborhood. The surface normal n(v) := nv is approximated as the average
of weighted triangle normals, i.e.,

ñv =
∑

(i,j)∈E1v

(vi − v)× (vj − v) , and nv =
ñv

||ñv||
. (11)

Note that E1
v includes all directed (counter-clockwise oriented) edges bounding

the 1–ring of v. For simplicity we use an area weighting scheme here, however,
applying more sophisticated normal approximation methods (see, e.g., survey
[1]) yields similar formulas.

Displacing vertices as v′ = v+εnv for small scalar ε entails recomputation of
vertex normals only within the 1–ring of v. It is easy to see that curvatures, how-
ever, are effected within the 2–neighborhoodN 2

v and curvature variation is there-
fore locally bounded. Consequently, scalar values within the 3–neighborhood N 3

v

of v have to be considered for computing the global variation of the error induced
by the displacement.

Starting from (11), we derive the following expression

ñv (ε) =
∑

(i,j)∈E1v

vi × vj + ε (δik (nvk
× vj)− δjk (nvk

× vi)) (12)

as updated unnormalized normal direction of vertex v after displacement of
vertex vk by εnvk

. Normalizing ñv yields the new normal nv. The normal of the
displaced vertex remains constant.

For fairing, a vertex is iteratively translated in several ε-steps as long as a
single displacement reduces the global error.

The error evaluation is summarized in algorithm 1, which yields a globalGain
of E: For each considered family the scalar field of N 3

v is established and the
resulting curvature approximations of {v}∪N 2

v is compared to the curvatures a
possible translation of v by εnv would give.

Mesh Fairing

We use the analysis of the local setting to globally minimize the accumulated
error E(V) for all vertices (or for those within a region of interest, respectively).
We take a randomized and serialized approach which iterates the following steps:

1. Randomly pick a vertex v ∈ V.
2. Take a binary decision whether a translation direction of v in direction nv

or −nv makes E decrease; otherwise restart at step 1.
3. Find the most effective displacement of v by integrating ε-steps as long as

the global error reduction is of significant magnitude. The step size ε is
adapted during integration by logarithmical attenuation depending on the
error reduction rate.
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We terminate the global iteration if no more enhancement can be achieved over
a specific number of iterations. Vertices on degenerate curves (critical points,
near infinite curvature) do not impose any problem as they will not be picked in
step 1. Generally their processing is delayed until their neighborhood is fixed ap-
propriately. Our experiments show that E(V) is effectively reduced at reasonable
computational cost (see section 5). We remark that in every local optimization
step curvature of characteristic curves is reduced not only for vertex v but also
in its 2–neighborhood due to the overlap of the respective curvature stencils.
Hence, for optimization within a region of interest, the boundary region is auto-
matically processed such that smooth transition of optimized curves across the
boundary is ensured.

Algorithm 1 Accumulated Curvature Gain by Vertex Step
1: procedure vertexStepGain(v, ε, C)
2: globalGain← 0
3: vtmp ← v
4: for all families f ∈ C do
5: for all vertices vi ∈ {v} ∪ N 3

v do
6: cvi ← scalarV aluef (nvi)
7: end for
8: v← vtmp

9: for all vertices vi ∈ {v} ∪ N 2
v do

10: oCvi ← approximateCurvature (vi)
2

11: end for
12: for all vertices vi ∈ Nv do
13: cvi ← scalarV aluef (nvi (ε))
14: end for
15: v← vtmp + εnv

16: for all vertices vi ∈ {v} ∪ N 2
v do

17: nCvi ← approximateCurvature (vi)
2

18: end for
19: for all vertices vi ∈ {v} ∪ N 2

v do
20: globalGain← globalGain+ (nCvi − oCvi)
21: end for
22: end for
23: v← vtmp

24: return globalGain
25: end procedure

5 Results

We provide results which demonstrate the effectiveness of our approach. In addi-
tion we refer to the supplemental videos which illustrate interactive curve control
and surface fairing.
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Curve Control. The proposed alignment methods highly facilitate the interroga-
tion of surfaces by characteristic surface curves. Figure 4 gives two examples (see
also video). We found (ISOP, 3x) and (RECI, 2x+ constr) especially useful for
automatic surface fairing applications as they require a low number of selections,
are computable in constant real-time and yield stable alignment results.

Single family fairing. For evaluation of our surface fairing method we first con-
sider reconstruction of a smooth surface region which has been perturbed by
noise. In this context, we refer to successful “reconstruction” as recovering char-
acteristic curves on the faired surfaced which should not deviate from their
counterparts on the initial smooth surface. In this first experiment we consider
only a single family of curves. Figure 5 shows results for both, isophotes (top
row) and reflection lines (bottom row), together with color coded curvature of
the respective curves of the family before (center right column) and after (right
column) optimization. For color coding we use a smooth scheme which maps zero
curvature to black and curvatures towards infinity to white. In both cases our
goal was achieved within a number of iterations which we plot over the error Ef

(logarithmic scale) for isophotes (left) and reflection lines (right). Furthermore,
the diagrams illustrate how the error reaches the original value (smooth surface)
and the value of the smooth surface undergoing additional fairing (dashed lines).

The fairing of a more complex model of a Chevrolet Corvette C41 engine
hood by reflection circles, which were aligned by (RECI, 2x+ constr), is shown
in figure 6. Within 2000 iterations the accumulated error dropped by 75.91%
for about 500 optimized vertices; the processing time was 40s. All timings were
measured on a 2.2GHz AMD Opteron processor.

Multiple family fairing. One of our main goals is to show that multiple families
of characteristic curves should be considered simultaneously. So far, only a single
family had been used in prior work. We demonstrate that the latter generally
yields improvement of this single family only, while other families may improve
or not — or may even get worse in appearance. Figure 7 shows an example, where
three differently aligned families (using (ISOP, 3x)) of isophotes are shown on
the initial model of a BMW Z3 engine hood in the top row. The second row
shows families resulting from solely fairing the left family: the two other families
did not improve in the same way. This is because fairing of a surface by a
single curve family does not necessarily improve the overall reflective properties
of a surface. A subsequent example shows that the contrary can also be the
case. Incorporating all three families into the fairing process gives better overall
results, see bottom row. The total processing time for multiple families depends
linearly on their number. The accumulated error of all families dropped by 32.5%
after fairing the single family using 2000 iterations, however, it dropped by 63.7%
fairing all directions. With the model scaled to the unit sphere, the average
displacement per vertex is of length 8.33·10−6, hence the induced approximation
error to the initial surface is negligible.

1 Corvette and BMW models from www.dmi3d.com.
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Fig. 4: Alignment examples:
(REFL, 2x + 2x + 2x + Mid)
on a bumpy sphere (top) and
(RECI, 2x + constr) on a mini-
mally bumped sphere (bottom).
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Fig. 5: Fairing of noisy surface by isophotes (left
graph, center row) and reflection circle (right
graph, bottom row), see section 5

In figure 8 we analyze the fairing of the car roof of a Volkswagen Beetle
using multiple families of reflection circles which were automatically aligned by
(RECI, 2x+constr) to be uniformly distributed. This example illustrates several
different families, and it illustrates several facts: first, the benefits of simultaneous
optimization of multiple families, second, the potential corruption of families
if only a single other family is considered. In the example the vertical family
shows already good quality which degrades when only the horizontal family is
optimized. In addition, the behavior of two skew families is shown, in the final
experiment they are also considered in optimization. The error is plotted versus
the number of iterations for all settings, accumulated error dropped by 32.26%,
41.32% and 58.28%, respectively. We moreover found that no other intermediate
family direction showed an imperfect behavior on the surface faired this way.

Curve class comparison. Both, isophotes and reflection circles, can be faired by
our generic approach. In our experiments cross validation showed comparable
performance for both curve classes. We could not affirm the proposition in [12]
stating that circular highlight lines are better suited for surface fairing than
highlight lines, as all directions are captured.

6 Discussion.

Our results support our claim that simultaneous consideration of multiple curve
families is advantageous for surface fairing. Furthermore, we provide new meth-
ods for controlling characteristic curves, which haven’t been applied in any pre-
vious approach.
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Fig. 6: Reflection circles on a Chevrolet Corvette C4 engine hood before (left) and after
(right column) fairing.

Prior work most similar to our method is [5] who considered reflection lines
for shape optimization based on triangle meshes. They concentrate on optimizing
one single family of reflection lines. The family is provided by the user, control
of curve parameters is not discussed. Emphasis on discretization and efficient
numerical minimization using screen–space parametrization and other approx-
imations yields a real–time algorithm with some view dependent limitations.
In contrast our focus was on new aspects summarized above. Our optimiza-
tion method uses a far simpler randomized greedy surface optimization which
converges to local minima and is far from real–time application. It would be an
interesting project for future work to see whether our method could be combined
with the minimization framework in [5].
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Fig. 7: Fairing of BMW Z3 model hood: Initial three families (first row), only first
family faired (second row) and all families faired (third row).

7 Conclusions

In this paper we make the following contributions:

– We showed that the fairing of a particular family of characteristic surface
curves (like isophotes, reflection lines, or reflection circles) does not neces-
sarily yield a fairer surface in the sense that other families of surface curves
become fairer as well.

– We introduced a number of techniques to align characteristic curves on sur-
faces by directly placing and interactively moving points on the surface in-
stead of specifying viewing and projection parameters.

– Based on this, we presented an approach for simultaneous fairing of multiple
families of characteristic surface curves which gives better results than a
single-family fairing.
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The following issues remain open for future research:

– Although the whole fairing process can be considered as a preprocess which
is carried out once, the performance of the algorithm could be enhanced.

– We have no general solution on the question how many families should be
faired simultaneously to get optimal results. Clearly, increasing the number
of families enhances the results but also increases the computing time lin-
early. In all our examples, four families were sufficient to ensure the fairness
of all families. However, we do not have a theoretical confirmation of this
statement yet.
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A Appendix

We summarize on systems of nonlinear equations for solving the general align-
ment problem of reflection lines.

– (REFL, e + 2x) — Given (e,p1), determine a member (e,p2) of the same
family by two selection normals n1, n2 (all members (e,pi) need to fulfill
(p1 × p2) · pi = 0 to vary along a common line at infinity):

Solve (2(e·n1)·n1−e)·p2
!
=0, (2(e·n2)n2−e)·p2

!
=0

and p2·p2
!
=1 for p2.

– (REFL, 4x+ 2x) — Determine (e,p1) (four interpolating selections x1, . . . ,x4)
and (e,p2) (two interpolating selections x5,x6):

Solve (2 (e·n1)n1−e)·p1
!
=0, (2 (e·n2)n2−e)·p1

!
=0,

(2 (e·n3)n3−e)·p1
!
=0, (2 (e·n4)n4−e)·p1

!
=0,

(2 (e·n5)n5−e)·p2
!
=0, (2 (e·n6)n6−e)·p2

!
=0,

e·e !
=1, p1·p1

!
=1, and p2·p2

!
=1

for e,p1 and p2.

– (REFL, 3x+ 3x) — Determine (e,p1) (three interpolating selections x1,x2,x3)
and (e,p2) (three interpolating selections x4,x5,x6):

Solve (2 (e·n1)n1−e)·p1
!
=0, (2 (e·n2)n2−e)·p1

!
=0,

(2 (e·n3)n3−e)·p1
!
=0, (2 (e·n4)n4−e)·p2

!
=0,

(2 (e·n5)n5−e)·p2
!
=0, (2 (e·n6)n6−e)·p2

!
=0,

e·e !
=1, p1·p1

!
=1, and p2·p2

!
=1

for e,p1 and p2.

– (REFL, 2x+ 2x+ 2x+Mid) — Determine (e,p1) (two interpolating se-
lections x1,x2), (e,p2) (three interpolating selections x3,x4,x7) and (e,p3)
(two interpolating selections x5,x6) of the same family (p1, p2 and p3 need
to be coplanar to vary along a common line at infinity, thus |p1,p2,p3|

!= 0):

Solve (2 (e·n1)n1−e)·p1
!
=0, (2 (e·n2)n2−e)·p1

!
=0,

(2 (e·n3)n3−e)·p2
!
=0, (2 (e·n4)n4−e)·p2

!
=0,

(2 (e·n5)n5−e)·p3
!
=0, (2 (e·n6)n6−e)·p3

!
=0,

(2 (e·n7)n7−e)·p2
!
=0, |p1,p2,p3|

!
=0,

e·e !
=1, p1·p1

!
=1, p2·p2

!
=1 and p3·p3

!
=1

for e,p1,p2 and p3.

Let cosαj = (2 (e · ni) ni − e) · r, then we obtain for the general alignment
problem of reflection circles:
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– (RECI, 4x+ 2x) — Determine (e, r, cosα1) (four interpolating selections
xi, i ∈ {1, . . . , 4}) and (e, r, cosα2) (two interpolating selections xi, i ∈
{5, . . . , 6}):

Solve (e·n1) (r·n1)
!
=(e·n2) (r·n2), (e·n1) (r·n1)

!
=(e·n3) (r·n3),

(e·n1) (r·n1)
!
=(e·n4) (r·n4), (e·n5) (r·n5)

!
=(e·n6) (r·n6),

e·e !
=1 and r·r !

=1 for e and r.

– (RECI, 3x+ 3x) — Determine (e, r, cosα1) (three interpolating selections
xi, i ∈ {1, . . . , 3}) and (e, r, cosα2) (three interpolating selections xi, i ∈
{4, . . . , 6}):

Solve (e·n1) (r·n1)
!
=(e·n2) (r·n2), (e·n1) (r·n1)

!
=(e·n3) (r·n3),

(e·n4) (r·n4)
!
=(e·n5) (r·n5), (e·n4) (r·n4)

!
=(e·n6) (r·n6),

e·e !
=1 and r·r !

=1 for e and r.

– (RECI, 2x+ 2x+ 2x+ 2x) — Determine (e, r, cosαj) , j ∈ {1, . . . , 4} using
four paired selections:

Solve (e·n1) (r·n1)
!
=(e·n2) (r·n2), (e·n3) (r·n3)

!
=(e·n4) (r·n4),

(e·n5) (r·n5)
!
=(e·n6) (r·n6), (e·n7) (r·n7)

!
=(e·n8) (r·n8),

e·e !
=1 and r·r !

=1 for e and r.

– (RECI, 2x+ 2x+ 2x+ constr) — Determine (e, r, cosαj), j ∈ {1, . . . , 3}
using three paired selections by imposing an order on the scalar values:

Solve (e·n1) (r·n1)
!
=(e·n2) (r·n2), (e·n3) (r·n3)

!
=(e·n4) (r·n4),

(e·n5) (r·n5)
!
=(e·n6) (r·n6), e·e !

=1, r·r !
=1

and (e·n3) (r·n3)
!
= 1

2 ((e·n1) (r·n1)+(e·n5) (r·n5))

for e and r.
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Horizontal Family Vertical Family Skew Family 1 Skew Family 2

Fig. 8: Optimization of the Volkswagen Beetle car roof. Bold family names in the error
plot correspond to optimized families. The top picture row shows initial curve fami-
lies with a plot of their respective curve curvatures. Solely fairing of the horizontally
oriented family corrupts the vertically aligned family (left plot, second row). Simultane-
ous fairing of both families enhances appearance the horizontal family while preserving
the quality of the vertical family (center plot, third row). Even better results can be
achieved by considering also the two skew families (right plot, last row)


