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Abstract
To project high-dimensional data to a 2D domain, there are two well-established classes of approaches: RadViz and Star
Coordinates. Both are well-explored in terms of accuracy, completeness, distortions, and interaction issues. We present a gen-
eralization of both RadViz and Star Coordinates such that it unifies both approaches. We do so by considering the space of
all projective projections. This gives additional degrees of freedom, which we use for three things: Firstly, we define a smooth
transition between RadViz and Star Coordinates allowing the user to exploit the advantages of both approaches. Secondly, we
define a data-dependent magic lens to explore the data. Thirdly, we optimize the new degrees of freedom to minimize distortion.
We apply our approach to a number of high-dimensional benchmark datasets.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—
Information Visualization

1. Introduction

Finding suitable projections from points in a high-dimensional data
space to the 2D visualization space is one of the standard problems
in Information Visualization, and it is still a hard one. The reason
for this is two-fold: Firstly, every projection comes with distortions,
an effect that should be minimized as much as possible. Secondly,
the space of all possible projections is infinite.

There are two classes of standard projection techniques: non-
linear projections, such as RadViz [HGM∗97], and linear projec-
tions, such as Star Coordinates [Kan00]. Both are well-explored in
terms of distortion minimization, cluster discrimination, and place-
ment (both interactive and automatic) of the coordinate points/axes,
respectively. However, both projection techniques have been ex-
plored rather independent of each other.

In this paper, we present an approach to unify both techniques.
We achieve this by considering the space of all projective projec-
tions from the data space to the visualization space. A projective
projection preserves the cross ratio of four collinear points and is
considered as umbrella term that joins non-linear, linear, and affine
projections. Since RadViz treats a certain subset of projective maps
and Star Coordinates feature the space of all affine projections, both
RadViz and Star Coordinates appear as special cases in our new
approach. The new approach has more degrees of freedom than
RadViz or Star Coordinates. Our approach to visualize and interact
with them is to have for every dimension a 2D coordinate axis to-
gether with a weight point moving on this axis. Both the axes and
the weight points can be interactively moved or automatically set
by certain optimization approaches.

Having more degrees of freedom for finding suitable projections

is not per se an advantage, especially when good projections are
searched in a purely interactive process. Therefore, we need ap-
proaches to automatically adjust or optimize the new degrees of
freedom to get better projections than RadViz or Star Coordinates
alone. To address this, we propose three approaches:

• We propose a scheme of interpolation between RadViz and Star
Coordinates, allowing to exploit the advantages of both tech-
niques.

• We use the new degrees of freedom to introduce a data-
dependent magic lens function working in the visualization
space. It allows to get more information about the relations in
data space from their projections.

• We use the new degrees of freedom to establish an axis-based
interaction scheme that minimizes projection-related distortions
during the exploration of the space of projective projections.

2. Related Work

The visualization of nD data is still challenging and thus various
techniques exist [CCKT83, Fri91]. Especially the use of projection
techniques has been established in recent years. They define a map-
ping of n-dimensional data to a 2D visualization space, to reduce
dimensionality and to get insights into data patterns. Integrated
tools exist providing the use of different projection approaches,
such as DimStiller [IMI∗10]. Such projection techniques are sys-
tematized in projective projections, affine projections, distance-
based projections, and their interactive applications.
Projective projections map straight lines to straight lines and pre-
serve the cross ratio of four collinear points [Far02,LT13]. A family
of multivariate projective embeddings has been introduced by Hoff-
man et al. as Radial Visualizations (RadViz) [HGM∗97, HGP99,
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Nv06, DCFMFM10, DGRG12]. It introduces non-linearity in the
projection process by using an additional weighting factor based
on an underlying spring model. Theisel and Kreuseler [TK98] pre-
sented a related variation to reveal a representative closed free-
form surface from the data. Additionally, normalized RadViz is
given by Daniels et al. [DGRG12], which investigates ordering
properties. Nováková et al. [Nv11, Nv06, Nov09] and DiCaro et
al. [DCFMFM10] described characteristic properties of RadViz.
They also stressed that misleading distortions might be introduced
due to the non-linearity of RadViz.
Affine projections map straight lines to straight lines and pre-
serve the ratio of three collinear points [Far02, LT13]. Kandogan
et al. [Kan00, Kan01] introduced multivariate affine Star Coordi-
nates. They define a linear multivariate projection from nD data
to a 2D visualization domain enabling a multivariate visual data
analysis. Star Coordinates also introduce additional distortions,
which leads to confusion during a visual search. In order to re-
duce such distortion effects, the multivariate Orthographic Star Co-
ordinates (OSC) [LT13] establish a set of constraints that facilitate
to preserve an orthographic multivariate projection. Some popu-
lar projection techniques are naturally orthographic, such as princi-
pal component analysis (PCA) or traditional bivariate scatterplots,
which are both a subset of the OSC. A comparison between affine
Star Coordinates and projective RadViz has been given in [RS-
DRS15]. Additionally, perception properties of such projections
were considered, e.g., in [EMdSP∗15]. In this work, we unify both
affine and projective projections and we present a generic concept
for multivariate projections.
Distance-based projections optimize a certain distance measure
to reveal a projection of interest. In fact, they can be both an affine
or a projective projection and thus they are “orthogonal” to the for-
mer mentioned techniques. The Multidimensional scaling (MDS)
[Tor52] preserves distances between the data records under pro-
jection and they are based on the eigenvalues of the data-related
distance matrix. With Glimmer [IMO09], a high-performance ap-
proach for multilevel MDS on graphic processing units is known
and Cheng and Mueller [CM16] propose to combine both the sim-
ilarity of dimensions and of data records to one concept of a fully
MDS. Paulovich et. al [PSN10] introduce the part-linear multidi-
mensional projection (PLMP) to speed up the projection process
by reducing the number of required distance samples from the
data. Additionally, a local affine multivariate projection (LAMP)
[JCC∗11] is known: for this, interactively placed 2D seed points
control and steer the distance-minimizing process regarding the
projected data and the seed points themselves. The inverse affine
multidimensional projection (iLAMP) [ABD∗12] goes the inverse
direction and it projects image points from the 2D visualization
space back to the space of high-dimensional data by minimiz-
ing nearest neighbor distances of the image points and the data
records in a least-square sense. Another error minimization ap-
proach, which has been applied to a set of different projection
techniques, was presented in [CM15] by focusing on radial lay-
out configurations. Our approach neither focus on a certain layout
scheme nor on different projection techniques. Instead, we consider
the complete space of projections in one technique. Additionally,
we present a novel distortion minimization concept (and a concept
of a magic lens) for our General Projective Maps that are also based
on a minimization of distances in the projection space.

Interactive Projection Applications are given by either interac-
tively manipulate the projection matrix – based on user input w.r.t
control points (cf. anchor points), data input, or parameters – or by
running an optimization in the background to provide a set of opti-
mal projections as a sort of a data tour.
Regarding this, a set of interaction techniques, e.g., for PCA-based
projections is provided [JZF∗09], such as a jitter operation to re-
duce clutter or by steering certain weights to control the influence
of variables to the projection. To go the other way around is pro-
posed in [NM13] by using a direct data manipulation and interac-
tion concept in order to investigate their influence under a certain
projection model and parameterization as well. To interact with the
projection space itself is proposed in [EHM∗11] w.r.t. a tourism
business case.
Data tours are a set of traditional approaches in order to suc-
cessively walk through the projection space. Based on low-
dimensional projections, Friedman et al. [FT74, Fri87] proposed
strategies to get 2D embeddings with patterns of interest for nD
data. From this, a time sequence of a set of projections is pro-
vided for conducting a visual data exploration. The projection pur-
suit [FT74, CBCH95] and the grand tour [Asi85] provide a greedy
tour of (bivariate) projections, which exponentially grows with the
number n of data dimensions. They allow to intuitively detect pat-
terns of interest in the data, but they are time-consuming, espe-
cially with growing n. Later, short and complete data tours with
a number of n/2 different multivariate projections have been in-
troduced [LT15]. Nowadays, it has become customary to explore
interactively the space of low-dimensional projections by control-
ling a related parameter set, such as the projection’s anchor points
(cf. [SDMT15]). Thus, a data tour has become an interaction con-
cept instead of just being presented as a sequence after a fully au-
tomatic preprocessing. We present a data tour-like interactive ex-
ploration scheme that automatically selects optimal projective co-
efficients in order to handle the degree of freedom of our General
Projective Maps, and in order to discard distortion during the ex-
ploration of the space of projective projections. In the following,
we present our concept of General Projective Maps.

3. Theory of General Projective Maps

We denote ◦ as the Schur (Hadamard) product of two matrices of
equal size, "diag" denotes the diagonalization matrix of a vector.
0i, j and 1i, j are i× j matrices with all entries 0 and 1, respectively.
We omit the indices if the dimensionality is clear from the context.

Let n be the dimensionality of the data space, and let m be the
number of present data points. Then the j-th point in the data space
can be written as d j = (d1, j, . . . ,dn, j)

T , and the matrix of all data
points is the n×m data matrix

D = (d1, . . . ,dm). (1)

Star Coordinates define a 2D coordinate axis ai for every dimen-
sion, while RadViz defines an anchor point that can be interpreted
as a position vector. This way, for both Star Coordinates and Rad-
Viz, the projection is defined by a 2×n projection matrix

A = (a1, . . . ,an). (2)

In Star Coordinates, the 2D projection x j of an nD point d j is

x j = A·d j (3)
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while in RadViz we have

x j =
A·d j

∑
n
i=1 di, j

. (4)

For Star Coordinates the matrix X of all projected data points is

X = A·D (5)

and for RadViz

X = A·D·diag
(

1
∑

n
i=1 di,1

, . . . ,
1

∑
n
i=1 di,m

)
. (6)

Our approach is based on a representation of both the data and the
projection matrix in homogeneous coordinates. For this, we define
the homogeneous data matrix as

D =

(
D

1, . . . ,1

)
(7)

and the homogeneous projection matrix as the 3× (n+1) matrix

A =

(
A 02,1
c 1− c·1n,1

n

)
(8)

with c = (c1, . . .cn). Fig. 1c illustrates A. Then, we get for the pro-
jected points in homogeneous coordinates

X = A·D =

(
x1, . . . ,xm
w1, . . . ,wm

)
=

(
A·D

w

)
with (9)

w = (w1, . . . ,wm) = 11,m + c·
(

D− 1
n

1n,m

)
. (10)

In the final step, the projected points in Cartesian coordinates are
obtained from the projective ones by normalizing them by wi:

X =

(
x1

w1
, . . . ,

xm

wm

)
. (11)

Note that c contains the new degrees of freedom that appear in
our approach. Also note that RadViz and Star Coordiantes are now
simple special cases: c = (0, . . . ,0) gives Star Coordinates while
c = (1, . . . ,1) gives RadViz. Figures 1(a) and 1(b) illustrate the pro-
jective projection matrices for RadViz and Star Coordinates.

(b)(a) (c)

Figure 1: Homogeneous projection matrices.

For the visual representation of the projection matrix A, we use
standard coordinate axes ai on each dimension. On each axis we
place a weight point (denoted by a little triangle in the visualiza-
tion) that can be freely moved on the axis. This is similar to Farin
points for rational Bezier curves [Far02]. The weight point in the
origin means ci = 0, while the weight point on ai means ci = 1.
Fig. 2 gives an illustration. Fig. 2b shows that representatives of
the projected data are visualized by colored circles. Note that the
color encodes the Euclidean distance for each data point in high-
dimensional space to its origin, which allows to distinguish data
records in the projection space. We draw a solid line from ai to the

weight points, while we draw a broken line from the weight points
to the origin. This is justified by the following fact: if all ci are 1
(i.e., if we have RadViz), the origin has no influence on the projec-
tion any more; in this case the coordinate axes are anchor points.

0

(a) (b)

Projected DataDimensions

Figure 2: Visualization of the projection parameters ai,ci without
projected data (a) and with colorized projected data (b).

Given the concept of General Projective Maps, a linear interpo-
lation between RadViz and Star Coordinates can be defined by

c = (t, . . . , t), (12)

giving a one-parametric family of projections depending on t. The
parameter t is interactively moved by the user; t = 0 gives Star Co-
ordinates while t = 1 gives RadViz. Note that we do not contribute
to the layout of the coordinate axes ai here and refer to standard
techniques for RadViz or Star Coordinates. Also note that for cer-
tain data points d j and certain t one can get w j = 0, meaning that
the projected point x j diverges to infinity. This is a property inher-
ited from RadViz where this could also happen. However, if all data
values di, j are positive and 0≤ t ≤ 1, we always get w j > 0. Fig. 3
shows a smooth transition between Star Coordinates and RadViz.

4. Minimizing the Distortion in General Projective Maps

Our General Projective Maps facilitates two interactive and novel
approaches to efficiently minimize distortions in the projection
space. This goal will be reached by finding a good selection for
the projective coefficients c automatically. Regarding this, we sub-
sequently provide a concept of magic lens, in order to minimize
distortions for a subset of the data, and a technique for a global
distortion minimization.

4.1. Magic Lens
Magic lenses describe a class of techniques where – within a
(usually circular) region – additional information or certain dis-
tortions are introduced in the visualization to get more insight
[TGK∗14, FB95, Fur86, ATS82]. Here, we want to modify c such
that we have a magnifying effect, within a certain region, whereas
outside the region the visualization is unchanged. The distortion
should go beyond a simple distortion in 2D in order to get more
information on the spatial relation in the data space.

The problem is stated as follows: given the data matrix D and
the projection matrix Ā consisting of A and c, we want to change
c to ĉ such that we obtain a magic lens effect. The magic lens is
set by a center xc, a radius r > 0, and a strength s > 0. Before
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Figure 3: Smooth transition between Star Coordinates and RadViz.

constructing ĉ, we realize that changing c to ĉ results in moving a
point x along the axis through x and the origin, i.e., it results in a
scaling of x. Here, x denotes the projected point in the projection
space, which is related to the data coordinate d by x̄ = Ā· d̄, with
x̄ = (x w)T and d̄ = (d 1)T (cf. Eq. (9)). Now, we construct ĉ in two
steps. Firstly, we define a function p(x) providing a desired scaling
of a projected point at x: if a point is projected by Ā to x

w , then the
change of c to ĉ should move the projected point to p

( x
w
)
·
( x

w
)
.

We construct p in the following way: if x is outside the circle with
radius r around xc, we set p(x) = 1. Otherwise, we compute the
Euclidean distance k of x to the origin, i.e., k = k(x) = ||x||, as
well as the distances k1,k2 of the intersection points of the line
through x and the origin with the circle with radius r around xc.
Fig. 4(left) illustrates the computation of k,k1,k2. Note that this
way k,k2 are non-negative while k1 can have any sign. Then, we
construct a piecewise polynomial function f (k) such that f (k) is a
degree 5 polynomial with

f (k1) = k1 , f (k2) = k2 , ḟ (k1) = ḟ (k2) = 1,

f
(

k1 + k2

2

)
=

(
k1 + k2

2

)
, ḟ
(

k1 + k2

2

)
= 1+ s(k2− k1), (13)

for k1 ≤ k ≤ k2 and f (k) = k else. In Eq. (13), ḟ denotes the first
order derivative of f . Note that Eq. (13) uniquely defines a degree
5 polynomial as long as k1 < k2. We provide a closed solution in
monomial form in an accompanying Maple sheet. Fig. 5 illustrates
f . Then, we set p(x) = f (k(x))/k(x). Fig. 4(right) illustrates p(x).

0
0

2
1

-2
-1

-1

-2

2

Figure 4: Computation of p(x) for magic lens effect regarding a
projected data point x and the magic lens parameters xc and r,
(left) computation of k,k1,k2, (right) resulting p(x) as height field.

In the second step, we complete the new ĉ by an energy minimiza-
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Figure 5: Examples of f (k,k1,k2,s),k = 1, . . . ,3 for several k1,s.

tion. In fact, we want to find ĉ such that the projected data point x j
w j

is moved to x j
ŵ j

that should be as close as possible to p
(

x j
w j

)
· x j

w j

where ŵ = (ŵ1, . . . ŵm) = 11,m + ĉ·
(

D− 1
n

1n,m

)
. (14)

This is a linear minimization problem. We search for a ĉ that mini-
mizes the quadratic error function

m

∑
j=1

ŵ j−
w j

p
(

x j
w j

)
2

.

Introducing the line vector

q =

 w1

p
(

x1
w1

) , . . . , wm

p
(

xm
wm

)
 , (15)

it is the solution of the linear system

M1 · ĉT = y1 (16)

with

M1 =

(
D− 1

n
1n,m

)
·
(

D− 1
n

1n,m

)T

y1 =

(
D− 1

n
1n,m

)
·
(
q−11,m

)T
. (17)

Note that the n×n matrix M1 depends on D only and can therefore
(along with its inverse) be pre-computed. This means that changing
the location of the magic lens affects only y1 and not M1.

4.2. Distortion Minimization

In this section we propose to use the new degrees of freedom to
minimize distortion while leaving A untouched. Given the data
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matrix D and the projection matrix A, we search for ĉ such that
distortion in the projection is minimized. For this, we consider
two matrices: E = (ei, j) is a symmetric m×m matrix such that
ei, j = ‖di − d j‖ depicts the Euclidean distance between the i-th
and j-th point in data space. G = (gi, j) is a symmetric m×m ma-
trix such that gi, j = ‖xi − x j‖ depicts the Euclidean distance be-
tween the projections by A of the i-th and j-th point in Star Coor-
dinates, i.e., for w = (1, . . . ,1). We want to find an optimal ĉ such

that distances between (ei, j) and (ĝi, j) =
(∥∥∥ xi

ŵi
− x j

ŵ j

∥∥∥) are mini-
mized. This is a non-linear optimization problem. Since we want
to interactively move A, we need an efficient solution. For this, we
linearize the problem. In fact, we break it down to the successive
solution of two linear problems in the following way: first, we com-
pute the vector p = (p1, ..., pm) giving the optimal scaling of each
projected point to minimize distortion. In a second step, we com-
pute the optimal ĉ to come as close as possible to p. For the first
step we minimize the following error function:

α

m

∑
i=1

m

∑
j=1

(
pi + p j

2
gi, j− ei, j

)2
+β

m

∑
i=1

m

∑
j=1

((pi− p j) gi, j)
2. (18)

The first term in Eq. (18) has the following meaning: assuming pi
and p j equal, the distance gi, j of xi and x j is scaled by p1+p2

2 which
should come as close as possible to ei, j. The second term enforces
that pi and p j are approximately equal. The ratio α

β
influences the

result. Throughout this paper we have chosen α = 0.5 and β = 0.1
(see Sec. 5.3.1 for details). Eq. (18) is a quadratic error function in
p. We get its minimizers by the solution of the linear system

M2 ·pT = y2 (19)

with

M2 = (α+4β) diag
(
(G◦G) ·1m,1

)
+(α−4β) (G◦G)(20)

y2 = 2 α (E◦G) ·1m,1. (21)

The second step, the computation of the optimal ĉ, is similar
to the magic lens approach in section 4.1: we solve Eq. (16) and
Eq. (17) with the only difference that q in Eq. (17) is

q =

(
1
p1

, ...,
1

pm

)
(22)

where (p1, ..., pm) = p were computed in the first step.

5. Evaluation

In this section, we conduct and describe a detailed evaluation of our
General Projective Maps, the projective magic lens, and the dis-
tance minimization for projective coefficients. For evaluation pur-
poses, we present in Sec. 5.1 background information to the eval-
uation setup. The evaluation of the magic lens concept is treated
in Sec. 5.2. In Sec. 5.3, we investigate relevant properties regard-
ing our concept of distance minimization with both a quantitative
evaluation in Sec. 5.3.1 and a qualitative evaluation in Sec. 5.3.2.

5.1. Used Benchmark Datasets and Hardware Configuration

From the UCI data base [AN], three high-dimensional benchmark
datasets are used: Iris [Fis36], Yeast [NK91], and Wdbc [SWM93].
In detail, the Fisher’s Iris plants data base consists of 5 dimensions
with 150 records. It gives measurements of the sepal as well as the

petal length and width for three iris species. An amount of protein
localization sites is given in the Yeast dataset, with 10 dimensions
and 1484 records. It is usually used to develop probabilistic classi-
fication systems in order to predict properties of proteins. The Wis-
consin Diagnostic Breast Cancer aka Wdbc consists of 569 records
with 32 metric dimensions each. It contains a set of attributes of cell
nucleus measurements that are revealed from breast cancer patients.
Note that a potential a priori classification within the data is not
within the focus of our approach or even required; thus, such cases
are treated as usual dimensions. Furthermore, to guarantee a fair
comparison between outcomes, to avoid numerical influence, and
to reduce scaling effects, we linearly normalized the data within the
interval [0,1].

Since the introduced concepts shall be tested for interactive use,
our experiments run on a small-dimensioned mobile workstation
with 2.4 GHz 64 Bit Intel chip, with 12 GB RAM and 8 cores in
single core and single threat mode on WIN 7 OS. The prototype
was done in C++ by using the libraries QT 5.1 for GUI support and
Eigen in order to support numerical matrix calculus. In the follow-
ing, we discuss results regarding our projective magic lens concept.

5.2. Evaluation of Magic Lens

The visual exploration of projection configurations of interest by
utilizing focus & context techniques like visual magic lenses is es-
tablished and accepted by users. Traditional lens concepts usually
operate in the visualization space (cf. [LA94]). In contrast, incorpo-
rating the data as an additional source of information is a benefit of
our projective magic lens. From the performance point of view, this
is feasible since our system is based on the data-related matrix M1
(cf. Eq. (17)), which can be solved on the fly because it grows in
the number of dimensions n, but not in the number of data points m.
Note that in practice usually m >> n applies. By using our lens ap-
proach, projected points in the image space that are related to data
points, which have different Euclidean distance values to the ori-
gin, are shifted in different directions. Clearly, a group of data rep-
resentatives Di that are placed closer to, e.g., the data’s origin than
another group D j, is moved in one direction and the other group in
another direction in visualization space. This effect of spatial sep-
aration is schematically illustrated in Fig. 6(d). Thus, a local stereo
vision-like effect [TC90] appears, by alternately enabling and dis-
abling projective magic lenses (compare Fig. 6(b) with Fig. 6(d)),
giving an intuitive view on the distance relations of the projected
data points of interest w.r.t. the projection configuration of interest.
The spatial separation performed by our projective magic lens en-
ables to address three visualization and exploration issues: (a) the
overplotting issue, (b) the issue of finding coherent data patterns,
and (c) the issue of the visual detection of (non-compact) clusters.

• (a) Overplotting Issue: describes that different data points di, i =
1, . . . , l might map to the same position x in visualization space
by x = A·di, which causes a loss of information. This effect
occurs especially for data being globally or locally dense. Due
to the spatial separation, the di are mapped to different posi-
tions xi when using a projective magic lens if the data records
are different, i.e., di 6= d j. Obviously, the introduced distances
||x− xi|| shrink to 0 if the projective lens strength s vanishes:
s→ 0⇔ ||x−xi|| → 0. Nevertheless, also multiple overplottings
are resolvable iff s 6= 0 applies, as Fig. 6(c) suggests.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



Dirk J. Lehmann and Holger Theisel / General Projective Maps for Multidimensional Data Projection

Projective Lense
resolves the
overplotting

(a)

(d)

(b) (c)

(e) (f)

-overplotting
      occur

Figure 6: Schematic illustration of the spatial separation by ap-
plying our data-driven projective magic lens on a visualization of
overlaid data patterns: (a) Considered data with separated color-
coded data cluster. (b) Related projection-based visualization that
shows overlaid pattern of the original separated data patterns. (c)
Example of an overplotting effect of those data that are separated
in data space but mapped to same position in visualization space.
Applying the lens resolves the overplotting. (d) Applying of the pro-
jective magic lens at position xc on the visualization of (b) leads to
a spatial separation of the data patterns (cf. (a)) in the visualization
space by moving the data representatives along the displacement
field of (e). (f) An optimal spatial separation might lead to a visual
cluster separation of related patterns of the underlying data.

• (b) Finding Coherent Data Patterns: means that it is desired that
separated patterns in the data should also be detectable in vi-
sualization and projection space. Usually, this is a challenging
task since separated data patterns appear overlaid in visualization
space. The spatial separation allows the user to build up a men-
tal image about unrelated data patterns because coherent patterns
“move” in a coherent direction during the projective magic lens-
based exploration. Hence, a number k of different movement di-
rections – or a discontinuous movement pattern in the underly-
ing displacement field – implies that a number of k separated data
patterns is overlaid within the visualizations. This way, unrelated
but in the projection overlaid patterns become traceable, as illus-
trated in Fig. 6(e) for a number of k = 3 different displacement
patterns.

• (c) Detection of (Non-Compact) Clusters: is one desired aim in
visual search, since it, e.g., prepares the analysis of association
rules encoded by the data. Regarding this, the spatial separation
might lead to a complete separation in visual space of represen-
tatives of separated clusters in data space. It enables a cluster
analysis w.r.t. a projection configuration of interest that would
not be able without the use of our projective magic lens, as illus-
trated in Fig. 6(f).

We exemplarily illustrate the benefit of projective magic lens
concepts compared to traditional magic lens concepts. One fam-
ily of traditional magic lens concepts are poly-focal magic lenses
[KS78, LA94]: Given the center of the lens xc, radius r, and
strength s, a visual representative x is replaced to x′ = x +
mag(x)xc,s ·(r·(x− xc)/||x− xc||) by using a (discrete or contin-
uous) magnification function, e.g., a radial-basis function, such

as mag(x)xc,s = s·e−||x−xc||2 . See [LA94] for further examples
of poly-focal magnification functions. Note that poly-focal magic
lenses act in the visualization space only.

In Fig. 7, a comparison between selected results of a real vi-
sual exploration with poly-focal and our projective magic lens con-
cept are illustrated for the datasets Iris, Wdbc, and Yeast regarding
certain projection configurations. The plain visualizations (Fig. 7
(left)) do not show further structure information. By using our pro-
jective magic lens, an underlying clustering of data in visualization
space can be revealed, as shown in Fig. 7 (right): For Iris, three
compact clusters occur, and two rather non-compact clusters occur
for Wdbc, and Yeast. By using the polyfocal magic lens, the under-
lying clustering stays hidden. In Fig. 8, we provide an additional
time series of an interactive visual exploration with both magic lens
concepts. The sub-images where clustering occurs are highlighted
by green-colored frames. Only magic lenses show further data re-
lations since the data itself is considered for its processing.

Projective Magic LensePolyfocal Magic LenseWithout Magic Lense

Projective Magic LensePolyfocal Magic LenseWithout Magic Lense

Projective Magic LensePolyfocal Magic LenseWithout Magic Lense

Figure 7: Comparison between different magic lens concepts for
a General Projective Map of the Iris (top), the Wdbc (2nd row),
and the Yeast (bottom) dataset: (left) without an applied magic lens
concept, (middle) with polyfocal magic lens, (right) with our pro-
jective magic lens. An inherent clustering in the data appears by
using our projective magic lens (right vs. left). With the polyfocal
lens the clustering remains hidden (middle vs. right).

5.3. Evaluation of the Distortion Minimization

In this section, we illustrate how our concept of distortion mini-
mization (cf. Sec. 4.2) makes a contribution to an anchor point-
based interaction, and we compare it with an interaction that is
conducted in projective RadViz, affine Star Coordinates, and Or-
thographic Star Coordinates [LT13]. Interactively changing anchor
points of the projection matrix A is a frequently used data explo-
ration tool. This is achieved by repositioning an anchor point ai
and by subsequently updating the projection. Regarding this, in
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Projective Magic Lense

Polyfocal Magic Lense

Projective Magic Lense

Polyfocal Magic Lense

Projective Magic Lense

Polyfocal Magic Lense

Figure 8: Time series of our projective (first row per case) and polyfocal (second row per case) magic lenses in action for three cases of the
real datasets Iris (top), Wdbc (middle), Yeast (bottom). In contrast to polyfocal lenses, our projective magic lenses allow the visual detection
of underlying data patterns, such as, e.g., visually hidden clusters, shown in green-colored frames.

Sec. 5.3.1 we present a systematic analysis for projection proper-
ties of both our General Projective Maps in comparison to further
projection techniques, and of the choice of distortion minimizing
parameters. Following in Sec. 5.3.2, we qualitatively investigate the
interaction benefit of General Projective Maps, again in comparison
to traditional projection approaches.

5.3.1. Quantitative Evaluation of Distortion Minimization
We empirically evaluate the distortion minimization with the aid
of a set of real data application examples. We start with defining a
distortion error: Be ||di−d j||− ||(xi/wi)− (x j/w j)|| the pairwise
distance differences of pair (di,d j) in data space and its related pair
(xi/wi,x j/w j) in projection space (cf. Sec 4.2) and be med(.) the

statistical median value of a set of scalars. Then, with (xi wi)
T =

(A c)·(dT
i 1)T , the average distortion error ed depending on the

projection matrix A and the projective coefficients c is given with
ed(A c) = |med(||di−d j||− ||(xi/wi)− (x j/w j)||)|.

Note that outliers do not negatively influence this median-based
measure. Furthermore, outliers are usually not relevant for the vi-
sual detection of patterns because data patterns are visually en-
coded by dense or locally compact regions, which justify the use of
the mentioned measure. Thus, if ed = 0 holds, no distortion occurs,
except for some outliers, and minimizing ed would reduce (global)
distortion effects.

Experiment 1: We conduct an experiment to evaluate the quality
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of distortion minimization regarding our distance minimization in
General Projective Maps, and compared to further traditional pro-
jection approaches. Our experiment generates a number l of l = 100
random projection matrices Ai = (ai j) with ai j ∈ [0, . . . ,1]. Then
our experiment defines several projections A∗i regarding a set of
projection concepts for a later analysis on their distortion proper-
ties. In detail:

• ARV
i = (Ai 1)T relates to RadViz,

• ASC
i = (Ai 0)T relates to Star Coordinates,

• AOSC
i = (Ai 0)T relates to Orthographic Star Coordinates, with

Ai = (xi yi)
T , ||x|| = ||y|| = 1, < x,y >= 0, where < x,y >

denotes the inner product of vector x and y (see [LT13]), and
• AGPM

i = (Ai ĉ)T related to our General Projective Maps with
minimized distortion property, where ĉ are the resulting pro-
jective coefficients ĉ that come out when the distortion is min-
imized, as described by Sec. 4.2.

In order to reveal a statistical view on distortion properties, our
experiment calculated the mean average distortion error

e∗ = 1/l
l

∑
i=1

ed(A∗i ) (23)

and the maximum/minimum distortion error

e∗min = min ed(A∗i ),e
∗
max = max ed(A∗i ). (24)

Our experiments have been conduced with the benchmark data Iris,
Wdbc, and Yeast. Fig. 9 illustrates the results.

RV
0

1

GPM

...

SC OSC
0

1

...
RV GPMSC OSC

0

1

...

RV GPMSC OSC

Figure 9: Distortion error values of our Experiments 1 for the dat-
sets Iris (top), Wdbc (middle), and Yeast (bottom) regarding the
projection techniques RadViz (RV), Star Coordinates (SC), Ortho-
graphic Star Coordinates (OSC), and our distortion minimization
of our General Projective Maps (GPM).

Analysis 1: It turns out that the mean average distance error eGPM

and the maximum error eGPM
max for our General Projective Maps is

the smallest in any case. These are promising results, meaning that
our distance minimization for General Projective Maps generates
projections with small distortions. I.e., they are reliable in terms of
visual search for patterns, since they are less misleading in a sta-
tistical sense within our experiment. The minimum distortion error
eGPM

min is only in the case of the dataset Yeast a bit larger for Star
Coordinates than for General Projective Maps. But the difference
in between has a dimensionality of 10−3 and is negligible.

Interestingly, the mean average distortion error eOSC for Ortho-
graphic Star Coordinates (OSC) is larger than the related value eSC

for Star Coordinates in case of the datasets Wdbc and Yeast. Fol-
lowing [LT13], one would expect the opposite, but an explanation
is obvious: OSC guarantees that pairwise distances in data space

do not get larger in projection space, but might be smaller; that
would cause a distortion error which explains the observed mean
average distortion error behavior. It follows that a large mean av-
erage distortion error value does not necessarily have to be a bad
result but a small value is always a good result, such as performed
by our General Projective Maps. The mean average distortion value
eRV for RadViz is throughout the largest. RadViz and General Pro-
jective Maps are both projective projections but the one performs
worse the other quite well regarding distortion reduction, which il-
lustrates that the projective properties need to be steered carefully
in order to reduce distortion, which justifies the use of our optimal
projective coefficients and our General Projective Maps.

Experiment 2: In addition, we were interested in the question how
dependent our distance minimization and the related distortion er-
ror is on the choice of the parameters α and β (cf. Sec. 4.2). Hence
we conduct another experiment. Analog to Experiment 1, our Ex-
periment 2 generates l = 100 random projections Ai, i = 1, . . . , l.
For each projection matrix Ai, a number of optimal distortion min-
imizing projective coefficients ĉβ were calculated, for the cases β=
0.1,0.2, . . . ,1.0 and α = 0.5. Since only the ratio of α and β influ-
ences the outcome (cf. Sec. 4.2), it is sufficient to fix one parameter
and vary the other. We vary β, i.e. the projection AGPM

i,β = (Ai ĉβ)
T

relates to the General Projective Map which is distortion minimized
by the parameter β. The mean average distortion error measure
eGMP

β
and its family eGMP

min,β,e
GMP
max,β is given analogously to Eq. (23)

and Eq. (24). Again, this experiment has been conduced in the data
Iris, Wdbc, and Yeast. Fig. 10 illustrates the results.
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

=0.5α

β
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

=0.5α

β

0.1
0
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

=0.5α

β

0.2
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Figure 10: Distortion error values of our Experiment 2 for the
dataset Iris (top), Wdbc (middle), and Yeast (bottom) regarding the
parameterization α,β of our distortion minimization algorithm for
our General Projective Maps. The error value pattern is almost
constant and independent of chosen α,β parameters.

Analysis 2: It can be seen that the characteristics eGMP
β

, eGMP
min,β,

and eGMP
max,β behave quite identical throughout the experiment. In the

Yeast and Wdbc dataset, a slight variation of the mean average dis-
tortion error eGMP

β
can be observed supporting the statement that an

appropriate parameter choice for our distortion minimization ap-
proach is α = 0.5 and β = 0.1, i.e., a ratio of 5 (0.5/0.1) seems to
be reasonable. However, the dependency on these parameters is a
weak one. In fact, the algorithm appears to be quite independent of
the choice of parameterization.
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Figure 12: Time series of anchor point interaction (red circle) for our distortion minimization in our General Projective Maps (GPM). We
considered the datasets Iris (top), Wdbc (middle), and Yeast (bottom).

Figure 11: Timings (in second) for the distortion minimization al-
gorithm w.r.t. an increasing data sampling Dγ with γ = 0.1, . . . ,1.
The performance deteriorates almost quadratically with growing γ.

5.3.2. Qualitative Evaluation of Distortion Minimization

Interaction abilities are important for the practicability of projec-
tion approaches [BCL∗06,MT03, MFL13,SY06]. To figure out the
interaction abilities, we conduct a qualitative experiment by ap-
plying anchor point interactions in projection space for our bench-
mark data. We investigate the interaction of anchor points w.r.t. our
General Projective Maps and our distortion minimization approach,
which is proceeded in the background. Note that the issue of distor-
tion minimization grows with the number m of data records Eq. (19-
21) and might thus be expensive, especially compared to our pro-
jective magical lens concept. We follow the suggestion of [PSN10]
and we use a uniform data sampling Dγ of the data D for Eq. (19-
21), whereas γ ∈ [0, . . . ,1] describes the portion of the data D, i.e.,
D0.1 equates to 10% of the data, D0.2 equates to 20% of the data,
and finally γ = 1 equates to the complete data D1 =D. Fig. 11 illus-
trates how the performance of our distortion minimization relates
to the the considered portion γ. Clearly, the algorithm can be used
in an interactive mode only if a subset of the data is considered.
Thus, we chose Dγ in a way such that the distortion error for Dγ

and D behaves similar. In fact, if Dγ in our studies equates to about
10% (D0.1) of the data values of D, the distortion error behaves
quite equal and the interaction performs well, too (cf. additional

video). Fig. 12 shows a selected set of time series of the anchor
point interaction (find further interaction-based time series in the
additional material). It turns out that the distortion minimization-
based interaction in General Projective Maps introduces two novel
characteristic abilities for visual search: (a) Structure-related Scal-
ing and (b) Structure-related Interlinking.

• (a) Structure-related Scaling: Informally speaking, projected
points usually “move” within the visualization space during an
interaction process regarding traditional projection approaches.
In General Projective Maps, a novel interaction-based visual ef-
fect occurs: a set of points does an additional scaling under in-
teraction. This is interesting, since data patterns that are sepa-
rated in data space have different scaling behaviors in projection
space under interaction, even if the projected points are overlaid.
Thus, separated structures can be revealed by the user. For in-
stance, one set of projected points might “shrink” and another set
of points might visually “grow”, which makes the difference of
both sets recognizable. Obviously, it is hard to show an effect of
movement by single images. Thus, consider the additional video
for understanding this scaling effect.

• (b) Structure-related Interlinking: Not all projected structures
have to have a relation to each data dimension (cf. sub-spaces).
Thus, during an interaction some projection points might not be
influenced, i.e., “blind” anchors and dimensions, respectively ex-
ist (see additional material). Thus, relations between the patterns
remain unclear. In the GPM-based interaction all projected pat-
terns are mutually interlinked and thus participate (in each situ-
ation) in an interaction, i.e., no “blind” dimensions are possible
anymore. This structure-related interlinking facilitates to inves-
tigate relations between the patterns, such as relative size in data
or compactness abilities, which can be seen in the GPM-based
interaction for all benchmark data in Fig. 12.

Note that Orthographic Star Coordinates perform a high-
dimensional rotation. Hence, the complete projection configura-
tion is influenced and changed under interaction, i.e., the complete
anchor point configuration is continuously transformed. Our Gen-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



Dirk J. Lehmann and Holger Theisel / General Projective Maps for Multidimensional Data Projection

eral Projective Maps instead allow a visual investigation of global
distance-based properties and data patterns with the same and de-
sired projection configuration, i.e., solely the interacting anchor
point is transformed, the remaining axes are not influenced.

6. Discussion

Our projection approach integrates the benefits of RadViz and Star
Coordinates and facilitates novel data-driven interaction concepts.

Projective Magic Lens: Over-plotting - Standard solutions asked
for (i) an appropriate density distribution [MG13] or (ii) an opacity
function. This brings up either (i) questions of performance –
because data structures have to be maintained and sampling issues
occur – or (ii) questions of transfer function design and value
normalization [SSK06]. Our concepts avoid these questions by
providing a smooth spatial separation of over-plotted data points.
Finding coherent patterns - Standard solutions are based on using
a sophisticated distance-based color-coding for the data in the
visualization space. Such color-coding is prone to outliers, which
might cause a misleading color-coding that falsely points out that
no space separated data patterns exist, even though the opposite
might be true. Moreover, the visual clutter might be large if many
colors are used, and a color-coding is self-defeating for such a
case. Our concept avoids such perceptual interferences.
Cluster detection - a hidden clustering might occur under optimal
choice of projection configuration only if these clusters in data
really exist. In other words, to the best of our knowledge, no false
positive detection of clusters is possible.

Distortion Minimizing: Structure-related scaling makes the
visual separation of separated data patterns possible, even though
the patterns are overlaid in projection space. This enables new data
insights and it supports the visual analysis of complex patterns.
Structure-related interlinking enables an action-reaction-like
interaction in any case, since distortions in the visualization are
continuously minimized.

GPM vs. MDS: A (metric) MDS is looking for one single pro-
jection (except rotation and scaling) that minimizes the distortion
best (or any other stress function) on a global level. This is equal to
a global distortion minimization. From the users’ point of view, a
MDS yields only one anchor point configuration AMDS. But what
if the user is interested in investigating further anchor point config-
urations? Thus, it is our idea to allow the user to set up the anchor
point configuration in the projection matrix A, and to use the re-
maining degree of freedom of (Ac)T in the c’s in order to minimize
the distortion for this configuration best within our distortion mini-
mization approach. This gives us a local minimum w.r.t. distortion
but it allows anchor point interaction. The MDS gives - at least
theoretically - a global distortion minimum, but made anchor point
interaction impossible by design.
Our magic lens approach allows to select a subset of the data which
should be projected as distortion-free as possible regarding a (user-
selected) anchor point configuration. It does not optimize the dis-
tortion globally, or for all the available data. Quite the contrary, the
distortion for the remaining projected data points might increase.
Even though the radius r of the lens would be infinite, meaning
that all data are considered for distortion minimization, the result-
ing projection gives again a local minimum w.r.t. the distortion and
is thus similar to the result of our interactive distortion minimizing

approach but not to the MDS, since the anchor point configuration
is still not part of the optimization itself (but the projective coeffi-
cients c) as it is in the MDS case.
Limitations: Both our magic lens concept and our distortion min-
imization concept find a local minimum (by fixing A) for the dis-
tortion error function, while the MDS detects a global minimum.
Moreover, the interactivity w.r.t. the distortion minimization is en-
abled as long as a sparse data sampling is used. Using more data
samples improves the quality of the distortion minimization but
made interaction impossible regarding our hardware configuration
setup. Beyond these rather technical limitations, the interpretation
of the data is less intuitive for an arbitrary user, since the manner
how the projective coefficients behave under interaction can hardly
be brought into accordance with the data in a mental sense. Infor-
mally speaking, one can visually recognize that something is being
optimized but one cannot intuitively understand the relation to the
data without more ado.
7. Conclusion
We presented General Projective Maps to unify and extend the tra-
ditional (multivariate) projection approaches of projective Radial
Visualizations and of affine Star Coordinates. We do so by intro-
ducing novel projective coefficients. Additionally, we illustrated
that the novel degree of freedom enables both a smooth transition
between Radial Visualization and Star Coordinates and a general
exploration of the complete space of projective projections. Addi-
tionally, we point out and evaluate concepts for an automatic op-
timization of the projective coefficients, which leads to a concept
of an interactive but data-driven projective magic lens and to an in-
teractive global distortion minimization. It enables reliable views
to the data pattern and potentially to novel data insights. We tested
our approach on a set of high-dimensional benchmark data. There,
we were able to detect structures by our techniques which would
not have been detected by traditional approaches regarding similar
projection configurations.
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