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Abstract—Principal Component Analysis (PCA) is perhaps the most popular linear projection technique for dimensionality reduction.
We consider PCA under the assumption that the high-dimensional data points are equipped with Gaussian uncertainty. Several
approaches to such uncertainty-aware PCA have been developed recently in the visualization community. Since PCA is a discontinuous
map, a small uncertainty in the data points can result in a huge uncertainty in the projected points. We show that the uncertainty of
the data points also creates uncertainty in the eigenvectors of the covariance matrix that defines the PCA projection. We present a
closed-form expression to quantify eigenvector uncertainty. Based on this, we propose a 3D glyph that supports the decision whether
existing solutions for uncertainty-aware PCA are sufficient, or whether a more expensive sampling-based approach is required. We

apply our approach to several test data sets.

Index Terms—PCA, dimensionality reduction, uncertainty visualization

1 INTRODUCTION

Dimensionality reduction, i.e., finding "good" projections from a high-
dimensional data space to, e.g., a 2D screen, is a standard problem in
visualization and other areas of data analysis. A variety of techniques
has been developed. Existing techniques can be distinguished into
two groups: linear vs. non-linear methods. Perhaps the most popular
linear dimensionality reduction technique is the principal component
analysis (PCA) [16]. Given the covariance matrix of the mean-centered
high-dimensional data, the PCA projects the data into the linear sub-
space spanned by the major eigenvectors of the covariance matrix. For
visualization, we usually select the first two or three major eigenvectors.

Recently, Gortler etal. [13] studied uncertainty in the data. They
show that if the data points are uncertain — with uncertainty defined
by a local mean and covariance matrix for each data point — then the
global covariance matrix for the PCA projection depends on both:
the individual local covariance matrices of each data point and the
covariance of their means. The projected uncertain 2D points have
then an uncertainty described by a 2D covariance matrix that is an
orthographic projection of the high-dimensional covariance of each
data point.

The research presented in this paper is driven by the realization
that PCA is a discontinuous map: A small perturbation of the high-
dimensional input data may lead to a large change in the eigenvalues
and thus to a completely different projection, which depends on the
order of eigenvalues and associated eigenvectors. This behavior is due
to the instability of eigenvectors of covariance matrices with similar
eigenvalues. This makes the consideration of uncertainty in PCA a
challenging task: A small perturbation of the input data can be modeled
by adding a small uncertainty to the data. This small uncertainty
can, however, result in a huge uncertainty in the projected data. This
behavior is not covered by Gortler etal., as for their approach the
projected uncertainty of a data point is always smaller than (or equal
to) the uncertainty of the points in data space. Similarly, the use of
derivatives of eigenvectors as proposed recently by Zabel etal. [41]
can be problematic as eigenvectors change discontinuously as two
eigenvalues become equal.

The main insight of our paper is that the uncertainty of the input data
points does not only influence the global covariance matrix and induce
uncertainty to the projected points. It also introduces uncertainty to the
global covariance matrix itself. We argue and show in examples that
it is necessary to incorporate this uncertainty of the global covariance

e Lukas Friesecke, Christian Braune, Christian Rossl, and Holger Theisel are
with Otto von Guericke University Magdeburg. E-mail: {lukas.friesecke,
christian.braune, christian.roessl, theisel} @ovgu.de

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints @ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

matrix into the PCA projection. As a result we present a sampling-based
technique for the visual analysis of uncertainty-aware PCA.

Since our sampling-based technique is significantly more expensive
than the approach by Gortler etal. [13], the question arises when it is
necessary to use our technique, and when it is safe to stick to theirs.
We address this question by introducing the covariance stability glyph,
a 3D glyph that encodes how uncertain the two major eigenvectors of
an uncertain high-dimensional covariance matrix are. We apply our
new techniques to a number of test data sets and show that this glyph
provides a simple method to decide which of the two methods should
be used.

The main contributions of this paper are:

* We present a simple example where the uncertainty-aware PCA
in [13] gives incorrect results.

» For uncertain input data points, with each from a multivariate
normal distribution, we present a closed-from solution of the
uncertain global covariance matrix.

* We introduce a sampling-based technique for uncertainty-aware
PCA that considers the uncertainty of the global covariance ma-
trix.

* We present a closed-form solution to compute a measure that
quantifies the likelihood that an arbitrary vector is an eigenvector
of an uncertain covariance matrix.

* Based on this, we introduce the covariance stability glyph that
encodes the stability of the major eigenvectors of an uncertain
covariance matrix.

2 RELATED WORK

There exist many techniques and different taxonomies for dimension
reduction. We refer to the following surveys [5,22,24,36,40] for an
overview.

Automatic projection techniques aim to find projections that are
optimal in some sense, i.e., which minimize certain criteria. Linear
projection methods yield projections that are linear maps, examples are
PCA [16], LDA [10], and a variety of variants of them. Examples of
nonlinear techniques are Classical MDS [33], LLE [28], MVU [38],
LSP [26], LAMP [27], SNE [15], t-SNE [35], and UMAP [20]. Each
of them comes again with several extensions and variants.

For the PCA there exist extensions and improvements (see, e.g.,
[6,19]): The Kernel PCA [30] tries to capture nonlinear patterns in the
data by first applying possibly nonlinear map to a higher dimensional
space in clusters can be linearly separated. Bayesian PCA [3,21,23,
29] focuses on estimating the dimensionality of the reduced space,
while robust PCA methods [2,34,37] address the presence of outliers.
Extensions to PCA have also been proposed in the context of fuzzy
systems such as [8], in which PCA was adapted for fuzzy numbers
by training an artificial neural network that accounts for the range of
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possible realizations for each fuzzy value. In [12] a review of methods
for applying PCA to interval data is given.

Probabilistic PCA [32] defines PCA by using a Gaussian density
estimation framework, which enables statistical testing and integration
with Bayesian methods. An expectation-maximization algorithm is
proposed to iteratively estimate the principal subspace, offering compu-
tational benefits for large data sets. Contrary to the approach in [13]
and our new approach, an unknown isometric measurement error is
assumed and estimated. This makes the computation of the model
much faster at the price of being overly simplistic.

The approach most related to ours is the uncertainty-aware PCA
by Gortler etal. [13]. In fact, our approach can be considered as an
extension and generalization of their approach as will be detailed in Sec-
tion 4. This approach has been applied to biological visualization [39],
and was combined with other approaches to uncertainty-aware projec-
tions [14,25].

Another recent approach considers the sensitivity of eigenvectors
of the covariance matrix in uncertain PCA by Zabel etal. [41]. Their
method constructs a local linearization of the eigenvectors and the
output data from a linearization of the uncertain input data, where the
required Jacobians are computed by automatic differentiation. While
this allows to better model the nonlinearity of constructing the PCA,
i.e., solving an eigenvalue problem, it does not consider its inherent
discontinuity. In Section 4.3 we show a simple example where such
linearization is not sufficient, such that a more general treatment of
discontinuities in the PCA is necessary. Furthermore, Zabel etal. [41]
present an animation-based approach for visualizing uncertain PCA: a
random closed curve in the space of all data points (on an equipotential
hyper-surface of the corresponding PDF) is mapped to the screen and
animated. While this gives interesting animations, the results depend
on the random choice of the closed input curve.

Our approach is based on the definition of the representation of
uncertain covariance matrices. Similar definitions — but reduced to 3 x 3
matrices — are given in the context of uncertain tensor visualization by
Gerrits etal. [11].

As part of our approach, we propose a 3D glyph to encode un-
certainty of the two major eigenvectors of covariance matrix for a
high-dimensional data space. Glyph design is a well-studied prob-
lem in visualization [4]. Several glyphs have been developed for the
visualization of the uncertainty of 3D tensors, including cones of uncer-
tainty [18], HiFiVE glyphs [31], SIP glyphs [17], multiple glyphs [1],
or interactive approaches [42]. All of them come from 3D tensor
visualization and are therefore restricted to uncertain 3 x 3 tensors.

3 NOTATION AND BASIC CONCEPTS

3.1 Mandel Notation of a Symmetric Matrix

We use the Mandel notation that maps a symmetric n x n matrix C into
an r-vector v(C) with r = %n(n + 1) such that v(C) contains all entries

of C. We define this map by an auxiliary matrix T € IN"*2 that has
entries from the set {1,...,n} such that every pair (i, /) € {1,...,n}?
with i < j is contained in exactly one row of T. Further, T defines the

r-vector d i) i)
{1 forT[i,1] =Tli,2
dli] = { V2 otherwise M
Then
v(C)[i] = d[i] - C[T[i, 1], T[;, 2]] ()
for i =1,...,r, where the brackets [-] denote the index of matrix or
vector’s component. For example, for n = 3, the definition of
o2 o3 2 1 )"
T= 2 3 3 3 2} G

givesd = (1,1,1,v/2,v/2,v/2)T such that

c11 C12 €13
\ 4 C12 €22 €23 (4)
L€13 €23 €33

= (c11,¢2,¢33,V2023,V2¢13,V2e12) T )

v(C)

We remark the definition of T is not unique and may use any permuta-
tion of rows. Given any concrete and fixed T the map v is bijective and
the inverse v_! maps an r-vector to a symmetric n X n matrix.

Note that v(-) preserves norms (due to the v/2 entries), i.e., ||C||r =
[[v(C)||, where || -||r denotes the Frobenius norm of a matrix, and
[|-1] =||-]l2 is the standard Euclidean norm. We use the operator
v(+) to describe the uncertainty of matrices in terms of standard ma-
trix and vector operations instead of non-standard higher order tensor
operations.

3.2 Random Variables, Distribution Functions, and Normal
Distributions

A vector of random variables (or random vector) x € IR” describes a
possible n-dimensional realization of a random process. The probability
of such an outcome is described by a multivariate probability density
function (PDF) p(x) fulfilling p(x) > 0 and

[ px)ax=1 ©)

where p(x) describe the likelihood that any sample drawn from the
random process would be the random vector x. We also call a random
vector x following the PDF p a realization of the distribution p. Note
that while the infinite integral of p(x) is always 1, p(x) can be larger
than 1 at some locations x € IR”.
Of particular interest are n-dimensional normal distributions, for
which holds
_ 1 ~1(x-m)TC! (x-m)
= 2
P(x) (27)" detC ¢ @
where m is a n-vector describing the mean and C is a positive definite
symmetric n X n covariance matrix. If a realization x is drawn from
such a distribution we write X ~ .4} (m,C).

3.3 Regular PCA

We consider the regular principal component analysis (PCA) as a linear
projection technique from a finite number of N data points x; in an
n-dimensional data space to the projected points y; in an m-dimensional
projection space with n > m. In general we would choose m < n.
However, for visualization purposes we usually consider m < 3. In its
regular setup, PCA can be formulated as follows: Given are N points

X1,...,Xy € IR". We search for their projected points yy,...,yy € IR
We compute mean m and covariance C of the points x; as
1N
m o= ,:21 X; (8)
1

M=

| N
CcC = N l(xi_m)(xi_m)T:N;XixiT_mmT )

where m is an n-dimensional point and C is a symmetric positive
semi-definite n X n matrix.

Let U:=U(C) € R be the orthogonal matrix with the first m major
eigenvectors of C sorted by descending eigenvalues as columns, then
the PCA can be expressed as

y[Zy[(Xl,...,XN):UT (x,»fm) (10)

after which the images y; of x; reside in IR™.

4 UNCERTAINTY-AWARE PCA

Gortler etal. [13] formulate the problem of uncertainty-aware PCA by
considering uncertainty of the data points. Instead of the data point x;,
an uncertain data point is represented by an n-dimensional PDF

pi(x) for i=1,.... N, xeR" (11)

where we assume that the PDFs p; are independent of each other. The
searched unknown projected uncertain points are m-dimensional PDFs

gily) for i=1,...,N,yeIR". (12)



Of particular interest is the case where the input distributions p; are
normal distributions, i.e.,

pi(X) :x ~ Ap(m;,C;) for i=1,...,N. (13)

This means that the input data are N mean vectors m; and N covariance
matrices C;.

In the following we will write p(x) = .4;,(m, C)(x) to indicate, that p
isaPDF and its x ~ .4,(m,C).

4.1 Existing Uncertainty-Aware PCA

[13] present a solution for uncertainty-aware PCA for the case that
pi(x) are normally distributed by (13). We call m; and C; the local

mean and covariance, respectively, as they are given for each data point.

From them [13] calculates the mean of the local means and the mean
of the local covariance as

1
N;

=
=

— 1
i, C=—)C; 14
lml ’ Nl- 1 ( )

1

m=

and the covariance of the local means as (cf. Equation (9))

1 ¥ _ T
Cmn = N;(mifm)(m,-fm) (15)

Then the global mean m and the global covariance C that define the
PCA projection are

(16) C=Cnp+C. a7

Note that (17) is the main theoretical contribution of [13]. Based on m
and C, each PDF p;(x) is projected to the PDF ¢;(y) by

m=m

qi(y) = N (mi,C})(y) (18)
with

m? = T (m; —m) 19)

¢, = u'qu (20)

with U given in (10). Note, that the main theoretical contribution of [13]
lies in the fact that we can use the covariance of the means and the mean
of the covariances to derive a new covariance matrix from which the
uncertainty-aware PCA can be calculated. Gortler etal. [13] get these
results by applying summary statistics but mention that it can also be
obtained "by integrating over the deviation of all possible realizations
of each probability distribution". Further, they state that these results
do not only hold for normal distributions but for all distributions having
a mean and covariance.

4.2 Existing Uncertainty-Aware PCA under Integration over
Realizations

In order to analyze the solution of [13] we rewrite their approach
in terms of integration over realizations. Let X = (xq,...,Xy) be a
realization of P = (py,..., py) with each x; ~ p;, i.e., X; is a random
point following the distribution p;. They give a mean for this particular

realization as
1 N
m=mX)=— y 21
m = m(X) Nl;x, 20D

The global mean is then obtained as integral over the means of all
realizations of P

m:_/,,“'/,,(pl(xl)'-'-'pN(XN)'ffl) dx ... dxy.

For computing the global covariance, one first considers the covariance

(22)

for the particular realization (x1,...,xy) of (p1,...,pN)
~ ~ 1N T
C=CX) = NZ(xi—m)(Xi—m) (23)
i=1
L o1 T
= Ninx, mm (24)

Il
-

which gives the global covariance by integration over all realizations

C:// (pl(xl)~...~pN(XN)-6> dx; ...dxy. (25

With this, each realization X of P is mapped to a realization Y of QQ by

¥i =¥i(X) = U (x; — m) (26)
fori=1,...,N, and U the orthogonal matrix with the major eigenvec-
tors of C as columns. Then the final projected distributions are

a) = [ [, i) pvtw)dx e @D

where
Di(y) ={X:yi(X) =y}

is the set of all realizations X = (x,...,xy) of P = (p1,...,py) that
map Xx; to y.

For the special case that the input PDF p;(x) are normally distributed,
the integrals in this section have a closed from solution. In fact, the
closed-form solutions for global mean (22), global covariance (25), and
projected distribution (27) are identical to the solutions in [13] by (16),
(17), (18), respectively. For a derivation of these, see appendix A.2.

(28)

4.3 A Simple Example

In order to analyze the existing uncertainty-aware PCA under normal
distribution, we consider a simple example with N =3,n =2,m = 1.
Let the distributions py, p2, p3 be the normal distributions .45 (mp,Cy),
M5(my, C), A3(m3, C3) with

m=(5) m §) - ()
o0 8) (5 D)0 2)

Note that for distributions p; and p3 the drawn realizations are always
m; and m3 respectively since there is no uncertainty. Only p, will
show actual randomness. Applying existing uncertainty-aware PCA
from Section 4.1 gives by (14) ... (17)

()= (F 5)
oI

which results by applying (19), (20) in output normal distributions
A(m),C)), A1 (m)y,C,), A (mf,CS) with

(29)

(30)

This gives
(3D

(32)
Ci=0,C=(/),C=

This means that all points m; are projected onto the same point 0, and
for m;, mj this projection has zero uncertainty. Figure 1 illustrates
this. The top part of Figure 1 shows the three input 2D data points by
ellipses representing the local covariance matrices. The bottom part
of Figure 1 shows the PCA projection of the means and covariances
to 1D following [13], with a small vertical offset added to m} and m}
to make them distinguishable. All the means are projected to 0, and
the projected covariances C} and CY are zero as well. The result of
the existing uncertainty-aware PCA tells us that for any realization
(x1,%2,%3) of p1, p2, p3, the PCA projects both x; and x3 to exactly the
point 0 without any uncertainty. Unfortunately, this is not true for most
realizations, not even for the realization with the highest expectation:
X| = mj,Xp = mp,Xx3 = mj3. In this case, PCA projects x; and x3 to
—1, and 1, respectively.
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Fig. 1: Top: Three uncertain input points represented by their

means m;,my, and m3 and their respective covariance ellipses
(cf. Eq. (29));Bottom: Result of using the uncertainty-aware PCA by
Gortler etal. [13] to project to a single dimension. m; and mj are both
mapped to 0 with zero uncertainty, while m; still has uncertainty. To make
the point distinguishable a small vertical jitter has been addded.

Let (x1,X2,X3) be a realization of the distributions (p1, pa, p3). Due
to (29), we know that

e () m=() o=() o
where a is a realization of the PDF
Pa(t) = o e~ HH00? (34)
Jivam
Applying regular PCA to (x1,X3,X3) gives by (8), (9)
m— (a(/)s) Cc— (2/% o 2?3 ) _ (35)
In the case that a fulfills
—V3<a< V3, (36)
we have U= (0,1)T € R?*! and by applying (10) resulting in
yi=(=1),y2=0,y3=(1). (37

This projection is not covered by (32) at all. In fact, (32) tells us that is
absolutely impossible (with zero uncertainty) that the point x; in (33)
is mapped to the point y; in (37). The probability that (36) is true is

V3
/ p2(x) dx =~ 0.65. (38)

V3

This means that in almost 2/3 of all realizations of p1, py, p3 in (29), the
result is not covered by existing uncertainty-aware PCA [13]. Figure 2
illustrates different realizations of (29) and their PCA projections. Note
that none of these realizations is covered by the uncertainty-aware PCA
in [13] in Figure(29).

We can use the same example (29) to analyze the approach by Zabel
etal. [41]. Here, the linearization of the uncertainty of the data points
leads to a zero Jacobian of the eigenvectors of the covariance matrix:
a small perturbation of the data points around their mean gives a zero
perturbation of the eigenvectors and therefore a projection

(39

with some linear uncertainty around mj. This means that [41] captures
only all data points fulfilling (36) but not the remaining ones. In other
words: for this example, [13] captures only approx. 1/3 of all possible
input data, [41] covers the remaining 2/3, but none of them yields the
correct result for all possible input data.

m) = (=1), my =0, mj = (1)

-4 2 0 2 4

2
X1 X1 X1
X2 X2 X2
0
X3 X3 X3
0 X3, %2 X1 X3, %2, X1 oX1 X2
X3

Fig. 2: Example (29): Different realizations and their PCA projections

4.4 Analysis of Existing Uncertainty-Aware PCA

Under some circumstances, the existing uncertainty-aware PCA may
produce the wrong result even for a very simple example. The
uncertainty-aware PCA by [13] computes a global mean and a global
covariance by (16), (17) that are the basis for the projection of each
realization. In other words, every realization X = (x1,...,xy) of
P = (p1,...,pN) is projected by the same transformation given by
m and the eigenvectors of C. This means that [13] treats PCA as a
continuous map: a small perturbation of the data points (represented
by a small uncertainty) always results in a small uncertainty of the
projections. While this simplification has the benefit of allowing simple
closed-form solutions for the unknown projected distributions, it can be
an over-simplification, since every realization X creates its own mean
and covariance from which the projection is computed.

The main insight from this analysis is: The uncertainty of the data
points also introduces uncertainty to the global mean and covariance
m and C from which the PCA projection is computed.

In the following, we propose a new approach for uncertainty-aware
PCA that takes the uncertainty of m and C into consideration.

5 NEW UNCERTAINTY-AWARE PCA

The main idea of our approach is to consider all possible realizations
of the PDFs (py,..., py). For each realization (i.e., for each N-tuple
of data points (x,...,Xy) where each x; follows the PDF p;), we
compute a regular PCA projection, resulting in the projected points
(¥1,---,¥~) in 2D. Since we know the relative likelihood of the real-
ization (x,...,Xy), we can compute the distributions of the projected
points by integration over all possible input realizations (xi,...,Xy),
i.e., by integration over an (n- N)-dimensional space. In the following,
we describe this approach in detail.

We introduce our new approach first in a general integration-based
formulation, before we present closed-form solutions for normal distri-
butions. Similar to existing uncertainty-aware PCA, the data is repre-
sented as n-dimensional PDFs p;(x) for i = 1,...,N, and we search for
unknown projected m-dimensional PDFs ¢;(y).

Let X = (x1,...,Xy) be a realization of P = (py,...,py). Similar
to existing uncertainty-aware PCA, the mean m of the realization is
given by (21). The new local covariance of this realization is computed
as (cf. Eq. (9))

(40)

(41

Note the difference of (40), (41) to the covariance (23), (24) considered
in existing uncertainty-aware PCA. In order to further analyze the

uncertainty of C, we write it in vector form in Mandel notation

¢=v(C) 42)
where ¢ is an r-vector with r = %n(n + 1) containing the entries of C.
To compute the global uncertain mean and covariance, m is re-
placed by a n-dimensional PDF m(x), and v(C) is replaced by an
r-dimensional PDF ¢(z) that are computed in the following way:

m(x):/“'/Dm(x)(Pl(xl)'~-~'PN(XN))Xm ... dxy 43)



where

D (x) = {X: m(X) = x} (44)
is the set of all realizations X = (x,...,xy) of P = (p1,..., py) that
have a mean of x. Further,

c(z):E/-~3[;@)un<xl>-~.~pN<xN>)dxl...de 45)

where

De(z) = {X :€(X) = ) (46)
is the set of all realizations X = (x,...,Xy) of P= (p1,..., py) that
have a covariance (in Mandel notation) of z. We call m(x) the global
uncertain mean and c¢(z) the global uncertain covariance. Finally,
for computing the projected distributions ¢;(y), each realization X is
projected to Y by

yi =yi(X) =U" (x; —m) @7)
fori=1,...,N, where U is the orthogonal matrix consisting of the
major eigenvectors of C sorted by descending eigenvalues, and the
calculations of m and C given in (21) and (40) respectively. With this,
the distributions ¢;(y) are computed - similar to existing uncertainty-
aware PCA - by (27) and (28).

To summarize, the difference of the new uncertainty-aware PCA to

the existing uncertainty-aware PCA by Gortler etal. [13] is to

* replace the global mean m in (22) by the global uncertain mean
m(x) in (43),

* replace the global covariance C in (25) by the global uncertain
covariance ¢(z) in (45),

* replace (26) by (47) for the computation of the projected distribu-
tions ¢(y), ensuring that each realization is projected by its own
mean and covariance.

5.1 New Uncertainty-Aware PCA under Normal Distribution

For the special case that the input PDF p; are normal distributions by
(13), both the uncertain global mean m(x) and the uncertain global
covariance c¢(z) are normal distributions by

m(x) = Ap(m,M)(x) (48)
c(z) = A(mc,Cc)(z) (49)

where m is a n-vector, M is an n X n covariance matrix, mc is an
r-vector and Cc is a n X n covariance matrix that are computed as

m - /n.../n(pl(xl)~...~pN(XN)~flvl) dxi ... dxy (50)
me = /’n.../n(pl(xl).m.p,v(x,v).a dx; ...dxy (51)
M = (m—m)m-m)" (52)
Cc = (€-me)E-me)" (53)
M - //]R (pr(x)- . pulxy) - M) dxy . dxy (54)
Ce = // n (pl(xl)..,..pN(xN).(:NC) dx, ... dxy(55)

Note that (50), (51), (54), (55) have closed-form solutions

m = m (56)
1_
M o= oC (57)
N—-1_
C = Cn+ TC (58)
mec = v(C). (59)

Further, C¢ is an r x r matrix for which the closed form solution is
given in Appendix A.1 and its derivation in Appendix A.2.
Unfortunately, the projected distributions ¢;(y) are not normal dis-
tributions and in general seem to have no closed-form solution. We
compute them by a Monte-Carlo sampling described in the next section.

Fig. 3: 2D radial Hann function iy, z(y)

6 SAMPLING-BASED COMPUTATION OF PROJECTED DISTRI-
BUTIONS

We compute a (large) number U of realizations X = (X t,...Xy k)
of the input distributions P, = (py,...,pn) fork=1,...,U. For each
realization, we perform a regular PCA with

1 N

_ 1 ~ ~ -
my = Nizzlxi,k , Cr= N;(Xi,k —my) (X, —my)

and compute the m major eigenvectors of Ek as columns of uy ; of
U =U(Cy) (60)

for j =1,...,m. Since the orientation of eigenvectors is arbitrary, we
make them orientation consistent by the following algorithm:

Input :An orthogonal matrix Uy = Uk(ék) (cf. (60)).
Output : An orthogonal matrix INJk with the eigenvectors all
oriented consistently.
1 U< Uy 1
2 for j<2toU do
3 ifal ﬁk;./‘ < 0 then
ﬁk7 j — —ﬁk, j
end

n B

— j—1 = 1=~
6 U+ “—u+-u;
7

7 end

that is computed for k = 1,...,m. Then the projected points to 2D are

ik = Ul (yix—my) fori=1,.. N. (61)
From this, we compute the projected distributions as
1 U
Ql(y) = E Z hy,;k,R(Y) (62)
j=1

where £ is the radial Hann function [9] with center y( and radius of the
support R > 0 that is in 2D defined as

2r
2

2 (Tl -
hyo,R(y)—{ R(m 74>°°S< 3 for  [y—yol <R

0 0.W.
(63)

Figure 3 illustrates this. Any other radial basis function with local
support, C' continuity, and integral 1 over its whole domain could be
chosen as well. Note that the g;(y) in (62) are C!-continuous PDFs.
For a fast computation of g;, an efficient lookup is necessary to decide
which projected points y; ; are in the R-neighborhood of a point y, as
only these points influence g;(y). This can be done by a binning of the
points y; x.

Our computation of ¢; depends on two parameters: the number of
samples U and the radius R of the support of the radial basis function.
We discuss their influence on performance and accuracy in Section 9.



7 UNCERTAIN EIGENVALUES AND EIGENVECTORS

Our sampling-based approach in Section 6 is significantly more expen-
sive than the approach by Gortler etal. [13]. On the other hand, we
identified a simple example where their method gives wrong results,
and thus a sampling-based approach should be used. This raises the
following question: We present an approach to decide a priori, i.e., with-
out carrying out the sampling, whether the approach by Gortler et al. is
sufficient, or whether the more expensive sampling is necessary. This
decision requires an analysis of the uncertainty of the global covariance
matrix, which is developed in this section. In particular, we quantify
the uncertainty of the eigenvectors and eigenvalues of the global co-
variance matrix, which is crucial as they steer the PCA projection. If
this uncertainty is small, i.e., the eigenvectors are rather certain, the
result produced by Gortler etal. is reliable. The more uncertain the
eigenvectors, the more unreliable are their results. In general, we ex-
pect the uncertainty of the global covariance to depend on two factors:
the uncertainty of the data points, i.e., the local covariance matrices,
and the dissimilarity of the eigenvalues of the global covariance ma-
trix: if the eigenvalues are close to each other, a small perturbation
of the data, i.e., a small local uncertainty, can change the (selection
of) eigenvectors and therefore the PCA projection drastically. Based
on the definition of uncertain eigenvectors, we develop a glyph-based
visualization, which supports a user to answer the initial question on
requiring or not requiring a sampling approach.

Given the global uncertain covariance matrix c(z), we measure the
uncertainty of its eigenvectors and eigenvalues by two distributions

v(x) :/E(x)c(z)dz and e(x,1) :/E( c(z)dz , (64)

x,A)

where x € IR” and A € IR, and E(x) (and E(x,4)) denotes the set of
all symmetric matrices that have x as eigenvector (with A as associated
eigenvalue). The v(x) (and e(x, A)) measure the likelihood that x is an
eigenvector of the global covariance matrix (with eigenvalue 1). Note
that they are not probability functions, as will be discussed below. We
call v(x) and e(x, A) uncertain eigenvectors and uncertain eigenvalues.

In the following, we describe the sets E(x) and E(x,A4) and derive
a closed-form representation of the functions v(x) and e(x, A) for the
case that ¢(z) is a normal distribution.

7.1 Symmetric Matrices with Eigenvector x

Let S denote the r-dimensional vector space of symmetric # X n matri-
ces, 1.e., the set of n X n covariance matrices are a subset of S, where
r=tn(n+1). Let

E(x)={Ae€S:3AeR: Ax=Ax}
denote the set of all A € S that have x as eigenvector.
Lemma 1. E(x) is an (r —n+ 1)-dimensional linear subspace of S.

Proof. We write symmetric matrices in A € S as

n n
A=UAUT = Z u,-u;r/'Li = xx'w; +Q Z wu;Tw; . (65)

i=1 i=2

This is the spectral decomposition with the orthogonal matrix U that has
eigenvectors u; as columns and the diagonal matrix A of eigenvalues
Ai € IR. We change the orthonormal basis as follows: fix u; := x and
chose Q as an orthogonal transformation in the (n — 1)-dimensional
hyper-plane that has x as normal vector, i.e. QTQ = I and Qx = x such
that X, Quy,...,Qz, are orthonormal vectors. This leaves n degrees of
freedom for the weights w; and %(n —2)(n—1) for Q, which results in
r—n+ 1 degrees of freedom in total. Finally, the condition Ax = 1x,
i.e., X is an eigenvector of A, is linear in the entries of A. O

We can easily compute an orthogonal basis for £(x) as well as an im-
plicit representation of the subspace: Choose a rank-r matrix R € IR"*"
as follows: such that its first column equals v(xx") and all remaining
columns are of the form v(z;z;T) with xz; = 0. Full rank is achieved

almost certainly by a random choice of vectors z;. Orthogonality can be
achieved by applying one Gram-Schmidt step z; « (I—xx'/||x|*)z;
to each vector z;. Finally compute the singular value decomposition
R = UZVT: The first » —n+ 1 columns of U provide an orthonormal
basis for E(x), where each basis vector represents a symmetric ma-
trix in Mandel notation. Let B € IR”*("~"*1) denote the orthonormal
matrix that has these basis vectors as columns. The remaining n — 1
columns of U provide the orthogonal complement. We collect them in
the orthogonal matrix K € R~ 1) and get an implicit representation
such that

Ex)={Bw:wecR " ={zeR :K'z=0}. (66)
It becomes obvious that with fixing w; = A in (65), E(x, 1) can be
represented as an (r — n)-dimensional affine subspace of S.

7.2 Uncertain Eigenvectors

In the following, we use the basis representation with B of £(x) and its
implicit representation with the kernel K as given in (66) for integration
in this subspace. As this integration generalizes to any subspace V
defined by B or K, respectively, and any multivariate normal distri-
bution, we use the generic symbols in this section. For the specific
application of computing the uncertainty of eigenvectors as in (64), we
set V = E(x) and C = C¢, and m = m¢ as defined in Section 5.1.

Let Ce SCIR™ and r = %n(nJr 1), and let V C IR" denote a
linear subspace of IR”. For a multivariate normal distribution c(z) =
An(m,C)(z) and an n-dimensional linear subspace V C IR" defined as
above, the integral of ¢ over V has the closed form

/ c(z) dz = : e @ (67)
v \/ (27)rank(K) det(KTCK)

with the squared Mahalanobis distance
s(z) = (z-m)’ €' (z—m)

and
Z = argmins(z) subjectto z€V .
z

For a basis representation of V, we obtain for x € IR"
~1
2=B(BTC'B) B'C”'x.

by substituting x = Bz and solving the linear system % s(z) =0.

For an implicit representation of V, we consider the gradient %L
of the Lagrange function L(z,A) = s(z) + AT(Kz) with Lagrange
multipliers A, which leads to solving the linear system

2\ _ (c' K\ '/C'm
AJT\KT 0 0 '
Figure 4 illustrates the setting.

7.3 Properties of Uncertain Eigenvectors

The uncertain eigenvector v(x) and eigenvalues e(x, A) are not normally
distributed, even if C(z) is normally distributed. Indeed, the measures
v(x) and e(x, A) are not even probability functions as they do generally
not integrate to 1 over the whole domain because multiple distinct
vectors X can be eigenvectors of C at the same time.

We consider integrals over spaces of symmetric matrices in E(x) C
S C R™". While these spaces include all covariance matrices, they
also include negative definite matrices, which are impossible covariance
matrices. The rationale for this is that the integration in a subspace
yields the closed form (67), whereas the integration over half-spaces
(see Section 7.1) is considerably more difficult. Furthermore, since
v~ !(mg) is positive definite by definition and ¢(z) has an exponential
decay away from mc, we can assume that c(z) is close to zero for z in



Fig. 4: The figure shows contour lines of the squared Mahalanobis
distance s(z). The evaluation point z in (67) is the minimum of s(z)
restricted to the subspace V that is defined either explicitly by basis
vectors B or implicitly by the orthogonal complement K, which is here
depicted as normal vector.

regions of negative-definite matrices. This is a common assumption in
many applications of normal distributions. For example, height or birth
weight of people are commonly assumed as approximately normally
distributed, neglecting that this gives a non-zero likelihood of negative
heights or birth weights. A similar assumption was used in [11] for
uncertain diffusion tensor visualization. We analyzed this assumption
empirically and compared the evaluation of the closed form on the right-
hand-side of (67) with a numerical approximation of the integral on the
left-hand-side. We restricted the integration domain to the open half-
space of the positive semi-definite matrices and applied a Monte Carlo
integration. (Note that sampling the half-space is straightforward for
a suitable basis representation of S, see Section 7.1.) We observed a
significant difference only if m¢ was close to the origin. And even then,
the evaluations were qualitatively very close in a sense that they showed
the same number of extrema at approximately the same locations.

We finally remark that while we are able to measure whether X is
an eigenvector of ¢(z) by v(x), we are not aware of any closed form
to compute a measure of x being the eigenvector associated with the
largest eigenvalue of ¢(z).

7.4 Covariance Stability Glyphs

‘We propose covariance stability glyphs as a visual representation of
uncertain eigenvalues and eigenvectors under normal distribution. The
functions v(x) and e(x, A) are defined w.r.t. x € IR” in n-dimensional
data space. Their visualization is straightforward if n is sufficiently
small: For n = 2, we can represent eigenvectors in polar coordinates as
x(a) = (cosa,sin )T . This leaves us with the visualization of radial
1D functions v(x(@)). The examples in Figure 5 and 8 show a polar

plot, i.e., a 2D curve
v(x(a))x(a) .

Similarly, e(x(cr), A) is a bivariate function that can be visualized, e.g.,
as a heat map. For n = 3, writing X in spherical coordinates

sin 3
sina cos 8
cosa cos 3

(68)

x(a, B) =

results in a spherical function v(x).

Covariance Stability Glyph. In general, however, v(x) and e(x A1)
map from higher-dimensional data spaces, which renders their visu-
alization challenging. Fortunately, we are not interested in all eigen-
vectors of ¢(z) but only the major eigenvectors associated with the
largest eigenvalues. For m =2, i.e., PCA projection to the 2D screen,
we restrict v(x) to the space spanned by the 3 major eigenvectors of
v l(m¢) = C. Let U = U(C) € IR"*3 be the orthogonal matrix with
the major eigenvectors sorted by descending eigenvalues as columns,
and let x(ot, B) be parametrized in spherical coordinates. Then we
consider the spherical function

v(e,B) :=v(Ux(e,B)) -

N
\~fz§; ;

X g v

Fig. 5: The covariance stability glyph for IRIS data set shows strong
deviations from distinct peaks in xy-plane (left), the projection by Gortler
etal. [13] (center) and our sampling-based method (right).

Then the subject of interest for visualization is a nonnegative spherical
function v(et, B). This gives several options for visual encoding such
as color, shape, texture, or combinations of these [4]. We follow the
common approach to encode properties of uncertain tensors by shape,
and propose a 3D covariance stability glyph as a closed 3D parametric
surface in spherical coordinates as

g(avﬁ) = V(avﬁ)x(av B) .

How to Read and Interpret the Glyph. The glyph g has the
following interpretation: a strong local peak in the direction of the z-axis
((0,0,1)7, i.e., & = 0,8 = 0)) shows that the first major eigenvector,
i.e., the one associated with the largest eigenvalue of ¢(z), has a low
uncertainty. A low uncertainty of the second major eigenvector of ¢(z)
is encoded by a peak of g in y-direction ((0,1,0)7, i.e., & = /2,8 = 0).
Finally, a low uncertainty of the third major eigenvector is encoded by
a peak in x-direction ((1,0,0)7, i.e., & = 7/2, B = 7/2).

This means that strong distinct peaks in the major axis directions
but small values of g(a, ) in other directions indicate that the major
eigenvectors of ¢(z) have a low uncertainty. In the limit of zero uncer-
tainty of the eigenvectors, i.e., the regular PCA, g(a, 8) shows 6 Dirac
peaks along all coordinate axes in positive and negative orientation, and
g is 0 in all other directions. The more g(¢, ) is nonzero away from
the major axis directions, the more uncertain are the eigenvectors of
¢(z), and the less reliable is the approach by Gértler etal. [13].

Even though we consider a projection into 2D, we have to consider
the uncertainty of the three major eigenvectors and therefore consider
a 3D glyph. There could be uncertainty on deciding which is the first
and the second major eigenvector but as well there could be uncertainty
between the second and the third ones (or, though unlikely, even among
all three). Therefore, it is necessary to analyze not only the first two
major eigenvectors but the first three, even though we ultimately apply
a projection to the 2D screen. This is because uncertainty of the second
major eigenvector that is caused similarly to the associated second and
third largest eigenvalues of ¢(z) affect the projection to the 2D screen:
in this case, the order of these two eigenvectors changes under a small
perturbation of the data, which results in a discontinuous projection.
Note that this reflects the fact that we can well find derivatives of
eigenvectors (as pursued in [41]), however, the norm of the derivative
approaches infinity as one eigenvalue approaches another one, and the
derivative is undefined if two eigenvalues are equal.

While it is necessary to consider the first three eigenvectors of
v~ (mc), it is not necessary to consider further eigenvectors. In fact,
higher order eigenvectors can be unstable if the corresponding eigen-
values are similar. While this may be an interesting information, it
does not influence the PCA projection. Since we project to 2D, only
the stability of the first two eigenvectors is relevant, i.e., the first 2
Eigenvalues must be well-distinguishable. Because of this, we leave
the higher-order eigenvectors unconsidered.

(69)
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(a) For this data set, the approach of Gértler etal. is reliable.

(b) For this data set, the approach of Gértler etal. is still reliable.

(c) For this data set, the approach of Gértler etal. is not reliable, and sampling
is unavoidable.

Fig. 6: 2D illustrating example with N = 4,n = 2. The left column of each subfigure shows Gortler et al. [13], the right column of each subfigure shows
our approach. Top row: Uncertain data and global covariance matrix. Center row: PCA for m = 2. Bottom row: PCA for m = 1 with some height

added for better readability.

8 RESULTS
8.1 lllustrating 2D Data Set

We illustrate our approach on a simple data set with n =2, N = 4, sim-
ilar to the one used by Gortler etal. [13]. We use similar data and a
similarly their style of presenting. In all comparisons, their method is
shown in the left column and ours in the right column. Figure 6a (top
left) shows the four uncertain normally distributed data points as col-
ored ellipses together with the major eigenvectors. Figure 6a (center
left) shows the alignment according to the major eigenvectors and is
therefore the linear map from n = 2 to m = 2 determined by the PCA.
Figure 6a (bottom left) shows the projection to 1D (i.e., m = 1) where
a small vertical offset is added to avoid clutter. Figure 6a (top right)
shows the same 4 uncertain data points in 2D data space, but now by
colored contours of the corresponding PDF. In addition, we visualize
the uncertain global mean m(x) in (48) by thin black contours of the
corresponding PDF, and we depict the uncertain eigenvectors v(x) of
the uncertain global covariance matrix as defined in (64) as 2D polar
plot (68) using a thick black line. Note that the uncertain eigenvector
plot has strong cone-shaped peaks in the directions of the eigenvec-
tors of the global covariance matrix. This means that the results of
Gortler etal. [13] are reliable.

To verify this, we show the projected PDF of each data point by
our sampling-based approach in Figure 6a (center right). The contours
are not ellipses any more, but still close to the ellipses in Figure 6a
(center left). This confirms that [13] is reliable for this data set. Fig-
ure 6a (bottom right) shows the projection to 1D. Note that the center
right and the bottom right parts of Figure 6a are the ones that are ex-
pensive to compute, as they are based on a sampling as described in
Section 6. We used the parameters R = 0.2, U = 250000 for sampling
for all examples in this paper. For all other parts of Figure 6a their com-
putation is inexpensive, because they can be evaluated in closed form.
This includes the uncertain global mean and uncertain eigenvectors
in Figure 6a (top right). For showing contours of 2D PDFs, we used
c1 =0.97,¢c, = 0.78,c3 = 0.30 such that inside the outermost contour
we have 97% of all realizations, and similarly for ¢y, c3.

Figure 6b shows a similar data set but with a scaled covariance for
each uncertain data point. Here the uncertain eigenvalues still have
distinguished peaks (thick black polar plot in Figure 6b (top right))
but not a sharp as in Figure 6a. Nevertheless, it still predicts that
Gortler etal. is reliable: the ellipses in Figure 6a (center left) are still
sufficiently similar to the PDF contours shown (center right).

In Figure 6¢c however, as the uncertainty of the input data is once
more increased by scaling the local covariance matrices of the data

points the uncertain eigenvectors (Figure 6¢ (top right)) now do
not show strong peaks anymore. This means that the approach of
Gortler etal. is not reliable any more: the ellipses in Figure 6¢ (center
left) differ significantly from the PDF contours in Figure 6¢ (center
right) which are not even convex anymore. In this case, our expensive
sampling-based approach (center right) is unavoidable.

8.2 Example from Section 4.3

Figure 7 shows the result of our approach for the example in Sec-
tion 4.3 consisting of 3 points in 2D. This is a special case because
only one point exhibits uncertainty, and does so in only one direction.
In fact, this example was constructed as the simplest possible example
to illustrate the issues of not considering the uncertainty of the global
covariance matrix. Here, the uncertainty of a single point causes a
switch of first and second principal eigenvectors without any changes
in their directions. Such a behavior cannot be detected by our uncertain
eigenvector v(x) in Figure 7 (top left) because it cannot distinguish
between first and second principal eigenvector (see remark at the end of
Section 7.3). However, the switch of first and second principal eigenvec-
tor by data uncertainty results in completely different projected PDFs
for the data points (Figure 7 (center right)) than the elliptic projections
by Gortler etal. [13] (center left).

8.3 Iris Data Set

We consider the well-known IRIS data set [10] with N = 150,n = 4,
which is labeled into 3 classes. Similar to Gortler etal. [13], we assume
a high-dimensional normal distribution of the data points in each labeled
class. This means that the input for their and for our approach are 3
uncertain data points in 4D. Figure 5 shows the covariance stability
glyph (69) for the data set. This reveals strong deviations from distinct
peaks in the xy-plane, which indicates that the second major eigenvector
of the global covariance matrix is unstable. This means that we consider
the projection by Gortler et al. as unreliable.

To verify this, we compare their projection to our sampling-based
approach in Figure 5, which reveals significant differences. In particular,
this is an example where the contours of the projected PDFs are not only
not convex anymore but may even split into disconnected components.
The multiple local maxima of the of the projected PDF are aligned
across the x-axis, which confirms that the second major eigenvectors
are unstable and we therefore have stronger deviations of the projection
in the direction of the y-axis.


https://archive.ics.uci.edu/dataset/53/iris
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Fig. 7: 2D example from Section 4.3 with n = 2: Left column shows
Gortler etal. [13]. Right column shows our approach. Top row: Uncertain
data and global covariance matrix. Center row: PCA for m = 2. Bottom
row: PCA for m = 1.

Fig. 8: Left: The covariance stability glyph for the STUDENT data set.
Center: Projection by Gortler etal. [13]. Right: Our sampling-based
method.

8.4 Student Data Set

The STUDENT data set was introduced in [8]. We use an adopted
version described in [13] and [41] that models all data uncertainties as
normal distributions for n = 4,N = 6. The covariance stability glyph
shown in Figure 8 (left) reveals a strong peak in the direction of the
z-axis but no distinct peaks along other axes. This means that the first
major eigenvector of the global covariance is rather stable, while the
second one is not.

Figure 8 shows that because of this the uncertainty in the PCA by
Gortler etal. [13] (center) appears much lower than in our approach
(right), which considers the uncertainty of the global covariance.

8.5 Anuran Calls Data Set

The ANURAN CALLS data set [7] contains acoustic sound features from
frog recordings. We are considering four different classes of frogs in the
data set and model the features as normal distributions, which results
in uncertain data with N = 4 and n = 22. Figure 9 shows the clustered
input data (left) as similarly depicted in [13] as well as the result of
their PCA projection (center). We remark that this visualization of the
projection is missing and not shown in their paper neither for clustering
by family as shown here nor for the clustering by genus, they only
show the clustering (left). Our sampling-based projection (right) shows
projected PDFs for the data points that are significantly more complex.

9 DiscussION

Parameters for sampling Our sampling-based approach de-
scribed in Section 6 depends on two parameters: the radius R of the
local Hann function and the number of samples U. Figure 10 shows a
parameter study for the data set in Figure 6b: For a small radius and
low number of samples (top left), strong artifacts are visible. Increasing
R under preservation of U provides a smoother reconstruction at the

Fig. 9: ANURAN CALLS data set. Left: Clustered data, reproduced from
Gortler etal. [13]. Center: Their projection as expected (missing in [13]).
Right: Our sampling-based projection.
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Fig. 10: Parameter study for sampling with radius R (varying horizontally)
and number of samples U (varying vertically). Higher values of R give
smoother reconstructions but may smooth out sharp detail. The higher
U, the higher the quality of the sampled PDF.

cost of removing sharp detail. The smaller R the more details can be
encoded. This means that high-quality PDFs require large values for U
and small values for R.

Also related to the quality of the sampled PDF is the dimensionality
of the data space. Clearly, the higher-dimensional the data, the higher
U must be to get acceptable samplings of PDFs. The dependence of
dimensionality and U is discussed in [13] and [41]. The performance
of our approach is directly related to the number U of samples. In this
paper, we used U between 250000 (for illustrating 2D data set and
example in Section 4.3) and 1000000 (for IRIS, ANURAN CALLS, and
STUDENT data sets), resulting in computation between a few minutes
to an hour on an non-optimized Python implementation.

Non-normal distributions  Our approach assumes a normal dis-
tribution of the uncertain data points. While this is a reasonable as-
sumption for many applications, it cannot always be assumed. If
normal distribution is not a realistic assumption for the input data, our
sampling-based approach is still feasible as long as a sampling of the
data distributions is available. However, in this case we are not able to
give an inexpensive prediction of the reliability of existing approaches,
as we derived the computation of uncertain eigenvectors only for data
from normal distributions.
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A SUPPLEMENTAL MATERIAL
A.1 Calculation of the Covariance of Covariances
Cc is a r x r matrix that can be computed as

Cclik] = %51 (70)
N
51 = %s2+; <s3+NZ;v234>
s = C[T[j,1],T[k,1]]- C[T[;,2], T[k,2]]
+  C[T[j,1],T[k,2]]- C[T(},2], T[k, 1]]
- CIT],20, Tk 2])- T, 1), Tk 1)
+  C[T[},2].T[k, 1]] - C[T[j, 1], T[k,2]]
53 = Gi[T[j,1],Tlk,1]] - m;[T[},2]] -m;[T[k,2]]
+  Ci[T[j, 1], T[k,2]] - m[T[j,2]] - m;[T[k, 1]]
+  Ci[T[},2],T[k,2]] - m[T[j, 1]] - m;[T[k, 1]]
+  Gi[T[},2],T(k, 1]} - m[T[j, 1]] - m;[T [k, 2]]
s = GIT[j,1], Tk, 1] - Ci[T[},2], T[k,2]]
+  Gi[T[j,1],T[k,2]] - Ci[T[},2], T[k, 1]]
+  Gi[T[},2], T[k,2]] - Ci[T[j, 1], T[k, 1]]
+  Gi[T[},2], T[k, 1] - Ci[T[j, 1], T[k, 2]
for j,ke{l,...,r} and m; =m; —m fori € {1,...,n}.

A.2 Solutions of Unbounded Multivariate Integrals

Most derivations require finding an unbounded multivariate integral
in a closed-form. We give a general formulation of this and start with
univariate case

1 _m?

p(x) = M(m,c)(x) = e
V27c

with mean m and variance c. We are interested in the unbounded
integral of the product of p with a 4-th order polynomial in x written as
Taylor expansion around m given by

-5

where r; are the coefficients of the polynomial r(x). Then we get

T

e (72)

1 1
/ plx dx—r0+2cr2+ ry. (73)

8
The derivation (73) is straightforward, we provide a Maple sheet
maple®1.txt in the additional material. Note that (73) shows that
only the even coefficients of r(x) contribute to the integral. This trans-
lates to the multivariate case as

p(x) = A5 (m, C)(x) (74)
and
4 4—in it [ 0 (o — mlk])ic
0-y Yy ( G -m )
i1=0i=0 in=0 k=1 Uk
with the polynomial coefficients r;, _; withiy,...,i, € {0,...,4} and

i1+...+i, <4. Then

1 n n
/IRnp(X)r(X)dXZrO, Ezzc[l ]] Fo1(i,))ye0u (i) (76)

n n n n
Z Zl Z Z (i1, j1]Cliz, Ja] . Yor (i, i stz o) see0n (it 1 sias2)
1 ji=1i=1 jo=1

OO \

where oy (i1, j1,i2,j2) is the number of appearances of k in
the arguments (iy, ji,i,j2), e.g., 01(2,1,3,1) = 2,00(2,1,3,1) =
1,03(2,1,3,1) = 1. The derivation of (76) is provided as Maple sheet

maple®1.txt in the additional material.

A.3 Glossary of Symbols

Symbol Explanation

T auxiliary matrix for transforming a symmetric
matrix into its Mandel form

v(C) Mandel form of a matrix C, e.g. its vector repre-
sentation

X; n-dimensional vector/data point

p(x) n-dimensional probability density function (pdf)
with x ~ 4, (m,C)

»(m,C)  n-dimensional normal distribution with mean m
and covariance C

m center/mean fo some data

C covariance matrix for some data obtained by
calculating YN | x;x] — mmT

U,U(C) orthogonal matrix obtalned by using the first m
eigenvectors of C. Used to calculate the projec-
tion of the x; € R" to y; € IR

Yi result of applying a PCA to x;

m; local means

m the mean of local means m;

C; local covariance matrices

C average of all local covariance matrices C;

Cn covariance of the local means

m] projection of the local means by an uncertainty-
aware PCA acc. to Gortler etal.

C; projection of the local covariance matrices by an
uncertainty-aware PCA acc. to Gortler et al.

X set of n individual realizations x; each drawn
from independent distributions p;(x) € P

P set of n individual probability density function

N pi(x)

m mean of all realizations in X

C covariance of all realizations in X

c mandel form of C

M squared deviation of the mean m from from m

Cc squared deviation of the mean of covariances
m¢ from from ¢

M squared deviation of the mean m from from m

Cc squared deviation of the mean of covariances
m¢ from from ¢

M covariance of means

C covariance of covariance matrices

my, mean m for the kth sample of X

Ui, U(C;) The orthogonal matrix obtained by using the
first m eigenvectors of C for the kth iteration of
Monte-Carlo sampling

v(x) probability that x is an eigenvector

e(x,1) probability that x is an eigenvector with associ-
ated eigenvector A

E(x) set of all matrices that have x as eigenvector

E(x,1) set of all matrices that have x as eigenvector with

associated eigenvector A
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